Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading

M. Mahdavian*
Department of Mechanical Engineering, Islamic Azad University, Arak Branch, Arak, Iran

Received 5 November 2009; accepted 24 November 2009

ABSTRACT
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution for the in-plane Airy stress field and Galerkin’s approach for stability analysis. The results for isotropic case will be compared with reference articles and finite element method (FEM) solution. Finally, the results will be achieved for a sample of FGM material as well as the research on the effect of power law index on buckling coefficient.

Keywords: Buckling; Airy stress; In-plane load; Functionally graded material

1 INTRODUCTION

Stability of plates is the most important classical subject well documented in numerous references and textbooks [1]. Most of the methods and analysis on buckling is related to uniform distribution load along the edges. But, in fact, the rectangular plates is usually the idealization of a small portion of a much larger and more complicated built-up plated structure and the applied loads are those exerted on the small portion by the adjoining structural elements. It is not easy to find out the actual distribution of the loads on boundary of the small rectangular portion under consideration because it requires modeling of the entire built-up structure. Thus, it is also necessary to examine the influence of various non-uniform load variations. In recent years, studies on new performance materials have addressed new materials known as functionally graded materials (FGMs). These are high performance heat resistant materials able to withstand ultra high temperature and extremely large thermal gradients used in aerospace industries. FGMs are microscopically inhomogeneous in which the mechanical properties vary smoothly and continuously from one surface to the other [2, 3]. Typically, these materials are made from a mixture of ceramic and metal. The nonlinear equilibrium equations and associated linear stability equations were expressed for bars, plates, and shells by Brush and Almorth in 1975 [4]. The subject matter of this book is the buckling behavior of structural members subjected to mechanical loads.

One case of un-uniform loading that has been studied reasonably well is that of compression by two collinear concentrated loads. Apart from the simplistic energy type analysis employed by Timoshenko [5] wherein the plane stress solution was completely obviated, there has been a more careful study based on finite element method to account for the steep in-plane stress gradients and the singular stresses directly under the points of loading [6]. The closely related case of uniform loading on a small portion of the edge usually called partial edge load or patch load has also been studied using a simplified approach [7] as well as rigorous series approach for plane stress analysis [8]. Except the above cases which are distinctly different from that of uniform loading applied all along the edge, general non-uniform loading has not received due attention in the literature till very recently. While early solutions

* E-mail address: mehdimahdaviyan@yahoo.com.
like that of Benoy [9] for a parabolically distributed uniaxial load can be cited, they suffer from drastic errors due to oversimplification. For instance, Benoy assumes that the parabolic stress distribution continues in the interior of the plate as well which is in total conflict with St. Venant’s principle. A similar oversimplification of the in-plane stress solution, with a violation of the compatibility relations, is also found in a recent work [10] on orthotropic plates under parabolic load. The importance of a two-step procedure first to determine the in-plane stress field accurately, and second to determine the buckling load with due account of that stress field was clearly highlighted by Bert and Devarakonda [11] with reference to a sinusoidal distribution of the uniaxial load. Jana and Bhaskar [12] have employed a more rigorous series approach to study a wide variety of load distributions. In FGM case Nan et al. [13] directly address the constitutive relations of FGM and wish specifically used as an analytical approach to describe the uncoupled thermomechanical properties of metal/ceramic FGM. These novel materials were first introduced by a group of scientists in Sendai, Japan [14] and then rapidly developed by the scientists. Javaheri and Eslami presented the thermal and mechanical buckling of rectangular FGM plates based on the classical and high order plate theories [15]. The buckling analysis of circular FGM plates is given by Najafizadeh and Eslami [16]. A new way proposed recently for applying the boundary conditions is called the new version differential quadrature method (DQM) [17]. The method is successfully used to obtain the buckling loads for anisotropic plates with uniform in-plane loadings.

In the present article, the equilibrium and stability equations for FGMs are obtained on the basis of classical plate theory. Then the influence of different edge load distributions of a simply supported plate is examined. Analysis is very rapidly in this method and has ability to spread solution for any loading and boundary conditions. Once again, an analytical approach is adopted so as to lead to a set of standard results which will be useful for judging various numerical approaches commonly resorted to.

2 FUNCTIONALLY GRADED RECTANGULAR PLATES

FGM is typically made from a mixture of ceramics and metal or a combination of different metals. The ceramic constituent of the material provides the high temperature resistance due to its low conductivity. The ductile metal constituent, on the other hand, prevents fracture caused by stresses due to high temperature gradient in a very short period of time. Further, a mixture of a ceramic and a metal with continuously varying volume fraction can be easily manufactured. The volume fractions of the ceramic \( V_c \) and metal \( V_m \) corresponding to the power law are expressed [18] as

\[
E(z) = E_c V_c + E_m (1 - V_c), \quad \nu(z) = \nu_c \tag{1}
\]

where \( z \) is the thickness coordinate \((-h/2 \leq z \leq h/2)\), \( h \) is the thickness of the plate and \( n \) is the power law index that takes values greater than or equal to zero. The variation of the composition of ceramics and metal is linear for \( n=1 \). The value of \( n \) equal to zero represents a fully ceramic plate. The mechanical properties FGM are determined from the volume fraction of the material constituents. We assume that the non-homogeneous material properties, such as the modulus of elasticity \( E \) change in the thickness direction \( z \) based on Voigt's rule over the whole range of the volume fraction [18]; while Poisson’s ratio \( \nu \) is assumed to be constant [20] as

\[
V_c = \left( \frac{2z + h}{2h} \right)^n, \quad V_m = 1 - V_c \tag{2}
\]

where subscripts \( m \) and \( c \) refer to metal and ceramic constituents, respectively. Substituting Eq. (1) into Eq. (2), material properties of the FGM plate are determined, which are the same as the equations proposed by Praveen and Reddy [18]:

\[
E(z) = E_m + E_m \left( \frac{2z + h}{2h} \right)^n, \quad E_m = E_c - E_m \tag{3}
\]

\[
(E_1, E_2, E_3) = \int_{-h/2}^{h/2} (1, z, z^2) E(z) \, dz \tag{4}
\]

3 EQUILIBRIUM AND STABILITY EQUATIONS
We initially consider an FGM rectangular thin flat plate \((-a/2 \leq x \leq a/2, -b/2 \leq y \leq b/2\) and thickness \(h\)) subjected to the mechanical loads. The general strain relations in the displacement \(z\) of middle plate are \([4]\)

\[
\begin{align*}
\varepsilon_x &= \varepsilon_x + zk_x, \\
\varepsilon_y &= \varepsilon_y + zk_y, \\
\varepsilon_{xy} &= \varepsilon_{xy} + 2zk_{xy}
\end{align*}
\]  

(5)

where \(\varepsilon_x\) and \(\varepsilon_y\) are the normal strain and \(\varepsilon_{xy}\) is the shear strain in middle plate. The strain-displacement relations are as

\[
\begin{align*}
\varepsilon_x &= u_x + \frac{1}{2} \beta_{x,x}, \quad \varepsilon_y = v_y + \frac{1}{2} \beta_{y,y}, \quad \varepsilon_{xy} = (u_{,y} + v_{,x}) + \beta_{x,y}, \\
k_x &= \beta_{x,x}, \quad k_y = \beta_{y,y}, \quad k_{xy} = \frac{1}{2}(\beta_{x,y} + \beta_{y,x}), \quad \beta_x = -w_{,x}, \quad \beta_y = -w_{,y}
\end{align*}
\]  

(6)

Here \(u, v\) and \(w\) denote the displacement components in the \(x, y\) and \(z\) directions, respectively, and a comma indicates the partial derivative. Hook’s law for plate is defined \([22]\) are as

\[
\begin{align*}
\sigma_x &= \frac{E}{1-\nu^2} \left[ \varepsilon_x + \nu \varepsilon_y \right] \\
\sigma_y &= \frac{E}{1-\nu^2} \left[ \varepsilon_y + \nu \varepsilon_x \right] \\
\sigma_{xy} &= \frac{E}{2(1+\nu)} \varepsilon_{xy}
\end{align*}
\]  

(7)

The stress resultants \(N_{ij}\), \(M_{ij}\) are expressed as

\[
(N_{ij}, M_{ij}) = \int_{-h/2}^{h/2} \sigma_{ij}(1,z) \, dz \quad i, j = x, y, xy
\]  

(8)

Substituting Eqs. (6) and (7) into Eqs. (8) give the constitutive relations as

\[
\begin{align*}
N_x &= E_1 \left[ \frac{1}{1-\nu} (\varepsilon_x + \nu \varepsilon_y) + \frac{E_2}{1-\nu^2} (k_x + \nu k_y) \right] \\
N_y &= E_1 \left[ \frac{1}{1-\nu^2} (\varepsilon_y + \nu \varepsilon_x) + \frac{E_2}{1-\nu} (k_y + \nu k_x) \right] \\
N_{xy} &= \frac{E_1}{2(1+\nu)} \varepsilon_{xy} + \frac{E_2}{1+\nu} k_{xy} \\
M_x &= E_2 \left[ \frac{1}{1-\nu} (\varepsilon_x + \nu \varepsilon_y) + \frac{E_3}{1-\nu^2} (k_x + \nu k_y) \right] \\
M_y &= E_2 \left[ \frac{1}{1-\nu^2} (\varepsilon_y + \nu \varepsilon_x) + \frac{E_3}{1-\nu} (k_y + \nu k_x) \right] \\
M_{xy} &= \frac{E_2}{2(1+\nu)} \varepsilon_{xy} + \frac{E_3}{1+\nu} k_{xy}
\end{align*}
\]  

(9)

The general equilibrium equations are obtained as
\[ N_{x,x} + N_{xy,y} = 0 \]
\[ N_{y,y} + N_{x,y} = 0 \]
\[ M_{x,xx} + M_{y,yy} + 2M_{xy,xy} - N_{x} \beta_{x} - N_{y} \beta_{y} - 2N_{xy} \beta_{x,y} = 0 \] (10)

Substituting Eq. (9) into Eq. (10) gives the constitutive relations as

\[
\frac{E_1}{1-v_{o}^2} (\mu_{xx} + v_{y,y}) - \frac{E_2}{1-v_{o}^2} (w_{xxx} + v w_{y,yy}) + \frac{E_1}{2(1+v_{o})} (\mu_{y,y} + v_{x,x}) - \frac{E_2}{1+v_{o}} w_{xy} = 0
\] (11)

\[
\frac{E_1}{1-v_{o}^2} (v_{y,y} + \mu_{xx}) - \frac{E_2}{1-v_{o}^2} (w_{yyy} + v w_{x,xy}) + \frac{E_1}{2(1+v_{o})} (\mu_{x,x} + v_{y,y}) - \frac{E_2}{1+v_{o}} w_{xy} = 0
\] (12)

\[
\frac{E_2}{1-v_{o}^2} (\mu_{xxx} + v_{y,yy}) - \frac{E_1}{1-v_{o}^2} (w_{xxxx} + v w_{y,yyy}) + \frac{E_2}{1-v_{o}^2} (v_{yyy} + \mu_{x,xy})
\]
\[- \frac{E_3}{1-v_{o}^2} (w_{yyyy} + v w_{x,xxy}) + \frac{E_2}{(1+v_{o})} (\mu_{x,y} + v_{x,xy}) - \frac{2E_2}{1+v_{o}} w_{xy} + N_{x} w_{xx} + N_{y} w_{xy} + 2N_{xy} w_{xy} = 0
\] (13)

Derivative Eq. (11) than \( x \) and Eq. (12) than \( y \), then add them as

\[
\frac{E_1}{1-v_{o}^2} (\mu_{xxx} + v_{y,xxx}) - \frac{E_2}{1-v_{o}^2} (w_{xxxx} + v w_{y,xxy}) + \frac{E_1}{1-v_{o}^2} (v_{yyy} + \mu_{x,xy})
\]
\[- \frac{E_3}{1-v_{o}^2} (w_{yyyy} + v w_{x,xxy}) + \frac{E_2}{(1+v_{o})} (\mu_{x,y} + v_{x,xy}) - \frac{2E_2}{1+v_{o}} w_{xy} = 0
\] (14)

To multiply Eq. (14) at \( E_{2} \) and substituting into Eq. (13) gives

\[
\frac{E_2^2}{E_1(1-v_{o}^2)} (w_{xxx} + v w_{y,xy}) + \frac{E_2^2}{E_1(1-v_{o}^2)} (w_{yyy} + v w_{x,xy}) + \frac{2E_2^2}{E_1(1+v_{o})} w_{xy}
\]
\[- \frac{E_1E_3}{E_1(1-v_{o}^2)} (w_{xxx} + v w_{y,xy}) - \frac{E_1E_3}{E_1(1-v_{o}^2)} (w_{yyy} + v w_{x,xy}) \frac{2E_2E_3}{E_1(1+v_{o})} w_{xy}
\]
\[+ N_{x} w_{xx} + N_{y} w_{xy} + 2N_{xy} w_{xy} = 0
\] (15)

At long last, gives the constitutive relations as

\[
\frac{E_2^2}{E_1(1-v_{o}^2)} \nabla^4 w + N_{x} w_{xx} + N_{y} w_{xy} + 2N_{xy} w_{xy} = 0
\] (16)

For derived stability equations, virtual displacements are defined [23] as

\[ u = u_{x} + u_{1} , \quad v = v_{y} + v_{1} , \quad w = w_{x} + w_{1} \] (17)

Results in the stability equations as

\[
\frac{E_2^2}{E_1(1-v_{o}^2)} \nabla^4 w_{1} + N_{x} w_{1,xx} + N_{y} w_{1,xy} + 2N_{xy} w_{1,xy} = 0
\] (18)

The subscript 1 refers to the state of stability and subscript 0 refers to the state of equilibrium. The terms \( N_{xx} \), \( N_{xy} \) and \( N_{xy} \) are buckling force resultants obtained from the linear equilibrium Eqs (11), (12) and (13).
4 FORMULATION AND ANALYSIS

A simply supported rectangular plate ($-a/2 \leq x \leq a/2, -b/2 \leq x \leq b/2$ and thickness $h$) subjected to compressive loading in the $x$ direction is considered. The load distributions are symmetrical about the mid-edges so that their net effect is to simply compress the plate without any overall bending action; further the distributions are identical on opposite edges.

4.1. In-plane stress analysis

The first step is to obtain the internal plane stress field corresponding to any applied loading on the edges. This requires a solution of the two-dimensional elasticity problem governed by the biharmonic differential equation

$$\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = 0 \tag{19}$$

where $\phi$ is Airy’s stress function. A rigorous solution of this equation, satisfying the boundary conditions on all the edges of the plate, can be obtained by superposition of two building blocks as shown in Fig. 1, each building block having a stress function in the form of Fourier series [21]. The first building block corresponds to the applied compressive load on the edges $x = \pm a/2$, with the coordinate system placed at the center of the plate is loaded with the in-plane loading as

$$\sigma_x = -\sigma_y \cos \left( \frac{\pi y}{b} \right) \tag{20}$$

Substituting the Airy stress function $\phi$ given by

$$\phi_1 = f(x) \cos \left( \frac{\pi y}{b} \right) \tag{21}$$

Into governing differential equation $\nabla^4 \phi = 0$, one can obtain the general solution for the functional $f(x)$ as

$$f(x) = -\frac{x^4}{b^4} f(x) \tag{22}$$

In which $C_1$ through $C_4$ are constants which are to be obtained from the boundary conditions. It is to be noted that the stress function solution as given by Eqs. (21) and (22) gives a zero normal stress at $y = \pm b/2$ edges. Substituting the zero shear stress boundary condition as well as the normal stress distribution as defined in Eq. (21), at the edges $x = \pm a/2$, yield a complete solution for the in-plane stress. (See Appendix A for complete solution)
But, the above in-plane stress solution gives a residual shear stress distribution at the $y = \pm b/2$ edges, it is given by
\[
\tau_y = \frac{\pi}{b} \left[ C_1 (\frac{\pi x}{b}) + C_4 \sinh (\frac{\pi x}{b}) \right] + \frac{\pi}{b} \left[ C_1 (\frac{\pi x}{b}) + C_4 \sinh (\frac{\pi x}{b}) \right] \cos \left( \frac{\pi y}{b} \right) \cos \left( \frac{\pi x}{b} \right)
\]  \hspace{1cm} (24)

In the present problem, a solution consisting of two superposed stress functions is sufficient to satisfy the required boundary conditions accurately. In order to eliminate these shear stresses at four edges, a building block is necessary. It is shown in Fig. 1 and corresponds to shear stresses applied along $y = \pm b/2$, and taken as
\[
\phi_2 = \sum_{m=1,2} f(y) \cos \left( \frac{2m\pi x}{a} \right)
\]  \hspace{1cm} (25)

It is to be observed that whereas the initial stress-function solution ($\phi_1$) is a one-term solution, the second stress-function solution ($\phi_2$) is a series solution. However, at the most, the first three or four series terms are sufficient to obtain a close approximation for the residual shear stress distribution due to $\phi_1$. Although the stress-function solution $\phi_1$ has zero normal stresses at the $y = \pm b/2$ edges and zero shear stresses at $x = \pm a/2$ edges, it does produce a residual normal stress ($\sigma_z$). However, it is observed that this $\sigma_z$ stress distribution is once again sinusoidal with a very small magnitude. Consequently, a renormalization of the superposed $\sigma_z$ distribution has to be carried out such that the resulting $\sigma_z$ stresses are very nearly as specified by Eq. (20). This renormalization is carried out using a small uniform stress and a multiplication factor. This methodology gives good results as shown in the net section. For ($\phi_2$) into governing differential equation $\nabla^2 \phi = 0$, one can obtain the general solution for the functional $f(y)$ as
\[
f(y) = D_{1n} \cosh \left( \frac{2m\pi y}{b} \right) + D_{2n} \sinh \left( \frac{2m\pi y}{b} \right) + D_{3n} y \cosh \left( \frac{2m\pi y}{b} \right) + D_{4n} y \sinh \left( \frac{2m\pi y}{b} \right)
\]  \hspace{1cm} (26)

Imposing the zero normal stress boundary condition at the $y = \pm b/2$ edges, an interrelation between $D_{1n}$ and $D_{2n}$ can be obtained. Now superposition of the shear stress distribution at the $y = \pm b/2$ edges and equating the resultant to zero yields a complete solution, as
\[
\sigma_z |_{y=\pm b/2} = 0
\]
\[
(\tau_{xy}, \tau_{yy}) |_{y=\pm b/2} = 0
\]  \hspace{1cm} (27)

The final solution is
\[
\phi_2 = \sum_{m=1,2} \left[ D_{1n} \cosh \left( \frac{2m\pi x}{b} \right) + D_{2n} y \sinh \left( \frac{2m\pi y}{b} \right) \right] \cos \left( \frac{2m\pi x}{a} \right)
\]  \hspace{1cm} (28)

where the constants are as defined in the Appendix B. Fig. 2 shows the comparative shear stresses at $y = \pm b/2$ plate edges for the case of $\phi_1$ stress function solution only and the superposed ($\phi_1 + \phi_2$) stress function solution. From this figure, one can clearly see that the superposed solution satisfied the zero shear stress boundary condition (on all four edges) very accurately.
4.2. Analysis for stability

The governing differential equation for thin plate buckling is

$$\nabla^4 w + \frac{h}{D} (\sigma_x \frac{\partial^4 w}{\partial x^2} + 2\tau_{xy} \frac{\partial^4 w}{\partial x \partial y} + \sigma_y \frac{\partial^4 w}{\partial y^2}) = 0$$

where $D$ is the flexural rigidity, $h$ is the plate thickness, and $w$ is the normal deflection. The well-known Airy stress function are defined as

$$\phi = \phi_1 + \phi_2$$

$$\sigma_x = \frac{\partial^2 \phi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \phi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y}$$

Owing to the complexity of the resulting plate buckling equation when each of the in-plane stress is a series sum, exact analytical solution may not be possible. Therefore, the buckling solution is obtained by using the Galerkin method for the case of simply supported rectangular plates. For the present case of simply supported rectangular plates with central coordinate system, the trial functions are

$$w(x, y) = w_0 \cos\left(\frac{m \pi x}{a}\right) \cos\left(\frac{n \pi y}{b}\right), \quad \{m, n = 1, 3, 5, \ldots\}$$

As is well known, the critical loads obtained by seeking non-trivial solutions of the homogenous system of equations is given by

$$\iint R \cos\left(\frac{m \pi x}{a}\right) \cos\left(\frac{n \pi y}{b}\right) \, dx \, dy = 0$$

where $R$ is the residual obtained by substitution of the assumed $w$ in the left-hand side of Eq. (29). Numerical calculations were conducted using symbolic math package Mathamatica (version 6.0). All the load distributions shown in Fig. 3 are considered for compression load.

5 RESULTS AND DISCUSSION

5.1. Isotropic plate

Further, all the plates are taken to be of square plan-form. The first step is to examine the correctness of the superposition approach employed for plane stress analysis. Numerical results are compared for convergence between three-term Galerkin solution and four-term solution. Some representative results for Sinusoidal load is presented in Table 1. Although the results obtained by Benoy [9] are for the case of parabolic loading, one can...
compare the solutions due to the close similarity of sinusoidal and parabolic stress distributions, and are compared with finite element program ANSYS 10. The plate width, plate thickness, Young's modulus and Poisson's coefficient were kept constant in the parameter study: \( b = 100 \text{ mm}, \ h = 0.7 \text{ mm}, \ E = 210 \ 000 \text{ N/mm}^2, \ \nu = 0.3, \ a/b = 1 \). In the model elements Shell98 8-Node Structural were used, based in Mindlin plate theory. The mesh density for each plate was 40×40 elements.

5.2. FGM plate

To illustrate the proposed approach, a ceramic-metal FGM is considered. The combination of materials consists of aluminum and alumina. The Young's modulus and Poisson's ratio for aluminum are \( E_m = 70 \text{ Gpa}, \ \nu_m = 0.3 \) and for alumina are \( E_c = 380 \text{ Gpa}, \ \nu_c = 0.3 \). Note that Poisson's ratio is selected to be constant and equal to 0.3. The convergent net buckling load for different distributions is shown in Table 2. One should note from Tables 1 and 2 that the effect of a non-uniform load distribution is quite significant. Variation of the critical buckling coefficient \( K_{cr} \) versus the volume \( p \) are listed in Table 3. In this Table, the values of critical buckling coefficients \( K_{cr} \) is obtained by the method developed in the present article. This table shows that the critical buckling coefficient increases with the increase of the power law index \( p \). It is interesting to note that the critical buckling coefficients for FGM plates \((p>1)\) are considerably higher than isotropic plates \((p = 0)\).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.149</td>
<td>5.408</td>
<td>5.286</td>
<td>4.59</td>
<td>4.68</td>
</tr>
</tbody>
</table>

© 2009 IAU, Arak Branch
Table 2
Total buckling coefficient (Values for $K$ in $P_{cr} = K \pi^2 \sqrt{D / b}$) for an isotropic square plate and simply supported edges ($v = 0.3$)

<table>
<thead>
<tr>
<th>Load distribution</th>
<th>Present (Superposition)</th>
<th>FEM Solution, ANSYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated load</td>
<td>2.409</td>
<td>2.582</td>
</tr>
<tr>
<td>Triangular load</td>
<td>3.540</td>
<td>3.315</td>
</tr>
<tr>
<td>Uniform load</td>
<td>4</td>
<td>3.972</td>
</tr>
<tr>
<td>Reverse Triangular Load</td>
<td>4.69</td>
<td>4.81</td>
</tr>
<tr>
<td>Sinusoidal load</td>
<td>5.149</td>
<td>5.286</td>
</tr>
</tbody>
</table>

Table 3
Total buckling coefficient (GN) for FGM square plate and simply supported edges with various $p$ (power law index)

<table>
<thead>
<tr>
<th>$P$</th>
<th>Concentrated load</th>
<th>Triangular load</th>
<th>Uniform load</th>
<th>Reverse Triangular load</th>
<th>Sinusoidal load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.015</td>
<td>5.901</td>
<td>6.666</td>
<td>7.77</td>
<td>8.581</td>
</tr>
<tr>
<td>3</td>
<td>29.855</td>
<td>43.873</td>
<td>49.562</td>
<td>57.67</td>
<td>63.801</td>
</tr>
<tr>
<td>4</td>
<td>49.086</td>
<td>72.134</td>
<td>81.487</td>
<td>94.81</td>
<td>104.898</td>
</tr>
<tr>
<td>5</td>
<td>72.376</td>
<td>106.359</td>
<td>120.151</td>
<td>139.81</td>
<td>154.669</td>
</tr>
<tr>
<td>6</td>
<td>99.723</td>
<td>146.547</td>
<td>165.551</td>
<td>192.632</td>
<td>213.111</td>
</tr>
<tr>
<td>7</td>
<td>131.137</td>
<td>192.711</td>
<td>217.699</td>
<td>253.31</td>
<td>280.242</td>
</tr>
<tr>
<td>8</td>
<td>166.625</td>
<td>244.861</td>
<td>276.613</td>
<td>321.862</td>
<td>356.080</td>
</tr>
<tr>
<td>9</td>
<td>206.194</td>
<td>303.009</td>
<td>342.301</td>
<td>398.295</td>
<td>440.630</td>
</tr>
<tr>
<td>10</td>
<td>249.859</td>
<td>367.162</td>
<td>414.773</td>
<td>482.623</td>
<td>533.932</td>
</tr>
<tr>
<td>11</td>
<td>297.597</td>
<td>437.328</td>
<td>494.037</td>
<td>574.853</td>
<td>635.968</td>
</tr>
<tr>
<td>12</td>
<td>349.438</td>
<td>513.511</td>
<td>580.099</td>
<td>674.994</td>
<td>746.755</td>
</tr>
<tr>
<td>13</td>
<td>405.378</td>
<td>595.716</td>
<td>672.964</td>
<td>783.049</td>
<td>866.298</td>
</tr>
<tr>
<td>14</td>
<td>465.417</td>
<td>683.946</td>
<td>772.635</td>
<td>899.025</td>
<td>994.603</td>
</tr>
<tr>
<td>15</td>
<td>529.558</td>
<td>778.204</td>
<td>879.115</td>
<td>1022.92</td>
<td>1131.674</td>
</tr>
</tbody>
</table>

Fig. 4 shows the critical buckling coefficients $K_{cr}$ for various load distributions and for various values of power law index. It is seen that the critical buckling coefficients increases with the increase of power law index. Figs 5, 6, 7, and 8 are graphs that show the critical buckling coefficients $K_{cr}$ increases with the increase of aspect ratio ($a/b$) for the cases of concentrated, sinusoidal, triangular and reverse triangular compression load with simply supported boundary conditions, respectively.
Fig. 5
$K_{cr}$ of FGM rectangular plate under Concentrated Load, for various values of power law index and for various values of aspect ratio ($a/b$).

Fig. 6
$K_{cr}$ of FGM rectangular plate under Sinusoidal Load, for various values of power law index and for various values of aspect ratio ($a/b$).

Fig. 7
$K_{cr}$ of FGM rectangular plate under Triangular Load, for various values of power law index and for various values of aspect ratio ($a/b$).
6 CONCLUSION

In the present article, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition Fourier solution for the in-plane stress field and Galerkin’s approach for stability analysis. Then, the equilibrium and stability equations for functionally graded rectangular plates are obtained with the assumption of power law composition for the constituent materials. Buckling analysis of FGM plate under various load distributions is presented. It is concluded that:

1. For such cases, the effect of non-uniform distribution is to significantly alter the critical value of the total load, and such changes are much more than the corresponding isotropic plate. Further, depending on the nature of the load distribution, the buckled configuration may also change.

2. The critical buckling coefficients $K_{cr}$ for the isotropic plate is generally lower than the FGM rectangular plate.

3. The critical buckling coefficients $K_{cr}$ for the FGM rectangular plate is increased by increasing the aspect ratio $(a/b)$.

4. The critical buckling coefficients $K_{cr}$ for the FGM rectangular plate is increased by increasing the volume power law index $p$.

5. The present converged analytical results will be useful for judging the accuracy of various approximate methods commonly employed.

APPENDIX

Appendix A

The constants occurring in the stress function $\phi_1$ equations are:

\[
\text{Eq. (23): } C_1 = \left( \frac{\sigma b^2}{\pi^2} \right) \left[ \sinh \left( \frac{\pi a}{2b} \right) + \frac{\pi a}{2b} \cosh \left( \frac{\pi a}{2b} \right) \right], \quad C_4 = \left( -\frac{\sigma b^2}{\pi^2} \right) \left[ \frac{-\pi b}{\sinh \left( \frac{\pi a}{2b} \right) \cosh \left( \frac{\pi a}{2b} \right) + \frac{\pi a}{2b}} \right]
\]

Appendix B

The constants occurring in the stress function $\phi_2$ equations are:

Fig. 8

$K_{cr}$ of FGM rectangular plate under Re-Triangular Load, for various values of power law index and for various values of aspect ratio $(a/b)$.
Eq. (28): \[ D_{2m} = \left[ \frac{\tau_{x}a^{2}\sin \left( \frac{2m\pi x}{a} \right) - \cosh \left( \frac{m\pi b}{a} \right)}{4m^{2}\pi^{2} \left( 1 - \frac{a}{b} \tanh \left( \frac{m\pi b}{a} \right) \right) \sinh \left( \frac{m\pi b}{a} \right) - \cosh \left( \frac{m\pi b}{a} \right) \tanh \left( \frac{m\pi b}{a} \right)} \right] \]

\[ D_{4m} = \left[ \frac{\tau_{x}a^{2}\sin \left( \frac{2m\pi x}{a} \right)}{4m^{2}\pi^{2} \left( 1 - \frac{a}{b} \tanh \left( \frac{m\pi b}{a} \right) \right) \sinh \left( \frac{m\pi b}{a} \right) - \cosh \left( \frac{m\pi b}{a} \right) \tanh \left( \frac{m\pi b}{a} \right)} \right] \]

REFERENCES


