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ABSTRACT
A model of the equations of two dimensional problems in a half space, whose surface in
micropolar thermoelastic medium possesses cubic symmetry as a result of 4 Ulad is
studied. There acts an initial magnetic field paratiethe plane boundary of the hadpace. The
crack is subjected to prescribed temperature and stress distribution. The formulation inetkie
ofthe Lordk hul man theory LS i ncl ud elLidsaymheoryGe With
two relaxation times, as well as the classical dynamical coupled theory CD. The normal
analysis is used to obtain the exact expressions for the displacenierorotation, stresses ar
temperature distribution. The variations of the considered variables with the horizontal di
are illustrated graphically. Comparisons are made with the results in the presence of
field. A comparisoris also maé between the three theories for different depths.
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1 INTRODUCTION

HE linear theory oklasticity is of paramount importance in the stress analysis of steel, which is the commonest

engineering structural material. To a lesser extent, linear elasticity describes the mechanical behavior of the
other common solid materials, e.g. concrete, waod coal. However, the theory does not apply to the behavior of
many of the new synthetic materials of the clastomer and polymer type, e.g. polymusthécrylate (Perspex),
polyethylene and polyvinyl chloride. The linear theory of micropolar elasikifgequate to represent the behavior
of such materials. For ultrasonic waves i.e. for the case of elastic vibrations characterized by high frequencies and
small wavelengths, the influence of the body microstructure becomes signifitéinfluence ofmicrostructure
results in the development of new type of waves, not in the classical theory of elasticity. Metals, polymers,
composites, soils, rocks, concrete are typical media with microstructures. More generally, most of the natural and
manmade materialincluding engineering, geological and biological media possess a microstructure. Eringen and
kuhubi [1] and Eringen [2] developed the linear theory of micropolar elasticity.

Thermaelasticity theories, which admit a finite speed for thermal signals, baga receiving a lot of attention
for the past four decades. In contrast to the conventional coupled destiwity theory based on a parabolic heat
equation (Biot, [3]), which predicts an infinite speed for the propagation of heat, these theories anfrgperbolic
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heat equation and are referred to as generalized thkstioity theoriesTwo generalizations to the coupled theory

were introduced. The first is due to Lord dgdtllman [4] who introduced the theory of generalized thermoelasticity
with one relaxation time by postulating a new law of heat conduction to replace the classical Fourier's law. Othman
[5] constructs the model of generalized thermoelasticity in an idoted@stic medium under the dependence of the
modulus of elasticity on the reference temperature with one relaxation time.

The second generalization to the coupled theory of thermoelasticity is what is known as the theory of
thermoelasticity with two relation times or the theory of temperature rate dependent thermoelasticity, and was
proposed by Green and Lindsay [6]. It is based on a form of the entropy inequality proposed by Green and Laws [7].
Green and Lindsay [6] obtained another version of the itotia¢ equations. These equations were also obtained
independently and more explicitly byhubi [8]. This theory contains two constants that act as relaxation times and
modifies all the equations of the coupled theory, not only the heat equation. Shigatl&ourier's law of heat
conduction is not violated if the medium under consideration has a center of symmetry. Othman [9] studied the
relaxation effects on thermal shock problems in elastic half space of generalized m#wraetoelastic waves
underthree theories.

Following various methods, the elastic fields of various loadings, inclusion and inhomogeneity problems, and
interaction energy of point defects and dislocation arrangement have been discussed extensively in the past.
Generally all materids have elastic anisotropic properties which mean the mechanical behavior of an engineering
material characterized by the direction dependenbe.three dimensional study for an anisotropic material is much
more complicated to obtain than the isotropie giowever, due to the large number of elastic constants involved in
the calculation. In particular, transversely isotropic and orthotropic materials, which may not be distinguished from
each other in plane strain and plane stress, have been more regfuldidg. A review of literature on micropolar
orthotropic continua shows that lesan [10], [11][, [12] analyzed the static problems of plane micropolar strain of a
homogeneous and orthotropic elastic solid, torsion problem of homogeneous and orthotirmgbécscin the linear
theory of micropolar elasticity and bending of orthotropic micropolar elastic beams by terminal couple. Nakamura et
al. [13] applied the finite element method for orthotropic micropolar elasticity. Rec&utigar and Choudhary
[14], [15], [16], [17], [18] have discussed various problems in orthotropic micropolar continua. Singh and Kumar
[19] and Singh [20] have also studied the plane waves in micropolar generalized thermoelastic solid.

Othman and Lotfy [21] studied twdimensional psblem of generalized magnetieermoelasticity under the
effect of temperature dependent properties. Othman and Lotfy [22] studied transient disturbance -gpacéalf
under generalized magneteermoelasticity with moving internal heat source. Othmash laotfy [23] studied the
plane waves in generalizadermemicrostretch elastic halpace by using a general model of the equations of
generalized thermmicrostretch for a homogeneous isotropic elastic half space. Othman and Lotfy [24] studied the
genealized themo-microstretch elastic mediurwith temperature dependent properties for different theories.
Othman and Lotfy [226] studied the effect of magnetic field and inclined load in micropolar thermoelastic
medium possessing cubic symmetry under thiheeries. The normal mode analysis was used to obtain the exact
expression for the temperature distribution, thermal stresses, and the displacement components. In the recent years,
considerable efforts have been devoted the study of failure and cramkglm This is due to the application of the
latter generally in industry and particularly in the fabrication of electronic components. Most of the studies of
dynamical crack problem are done using the equations of coupled or even uncoupled theoeiesoafabticity
[27-30]. This is suitable for most situations where long time effects are sought. However, when short time are
important, as in many practical situations, the full system of generalized thermoelastic equations must be used [4].

The purposeof the present paper is to determine the normal displacement, normal force stress, and tangential
couple stress in a micropolar elastic solid with cubic symmetry. The normal mode analysis used for the problem of
generalized thermmicrostretch for an infite space weakened by a finite linear opening Mbdeack is solving
for the considered variables. The distributions of the considered variables are represented graphically. A comparison
is carried out between the temperature, streises;ouple stresshe microotationand displacemertomponerg as
calculated from the generalized thermoelasticity LS, GL and CD theories for the propagation of waves in semi
infinite elastic solids with cubic symmetry

2 FORMULATION OF THE PROBLEM

We consider a homogeous, micropolar generalized thermoelastic solid-$dice with cubic symmetry. We
consider rectangular coordinate system (X, y, z) having origin on the surfa@eyd yaxis pointing vertically into
the medium. A magnetic field with constant intepdit=(0,0,H,) acts parallel to the bounding plarieable as the
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255 Effect of Magnetic Field and a Mode&Crack 3D-Problemé

direction of the zaxis). Due to the application of initial magnetic field H, there are results of an induced magnetic
field h and an induced electric field& . The simplified linear equations of electrodynamics of slowly moving
medium for a homogeneous,

Thermally and electrically conducting elastic solid are,

Geometry of the problem.

curlh=1J + & D
culE= - Orh @
divh=0 ©)
E= - OI‘%J X H (4)

where ® is the partied velocity of the medium, and the small effect of temperature gradighti®ignored. The
dynamic displacement vectis actually measured from a steady state deformed position and the deformation is
supposed to be small.

The components of the magnetic intensity vector in the medium are

H, =0 , H, =0 , H, H, hfx,y,2 ®)

z

The electric intensity vector is normal to both thegnwtic intensity and the displacement vectors. Thus, it has
the components

E.;= -, n , E  Hm , E O ©)
The current density vectad be parallel toE , thus

Hh o fin TR
J =— Uuv — - H U,u

my % H o y o o & (7)
h= -H,(0,0,¢ (8)

where e is the dilatation. If we restrict our analysis to plane strain paralléiteplane with displacement vector
u=(u v,0) and microotation vectoy :(0,0, 3j) then the field equations and constitutive relations for micropolar

thermoelastic solid with cubic symmetry in the absence of body forces. Body couples and heat sources can be
written by following the equations given by Minagawa et al., Green Lindjand Othman and Baljeet:as

wu [ n HE o Mo, 2up A W, T o p
A1“X2 Aavz'(Az A‘)UXV(A; At}yu oo_mxuooot e_xg’eu tl_n:fgutz’k 9
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s, :AAEﬁ”E“ —318A3;: . (15)
Sy #\4%%/ -318/%;%:5 335 (16)
mYZ:Bgﬁ, an
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where s; and m;, are the components of force stress and coupled stre%séﬁ ZAZ) .., Is coefficient of
linear expasion, 7 is the density,] is the microinertia,K™ is the coefficient of thermal conductivit™ is the

2
specific heat at constant stralfy; and t; are the thermal relaxation times, abd —“2 ér?ﬁ
X
For thermoelastic micropolar isotropic mediuA), A,, A, A,, B are characteristic constants of the material
defied as

A=122 Kkt A = |A ks md , B = (29
For simplificaton, we shall us the following non dimensional variables:
w* Co W - - _ - T S.
X' =X, U = ] t :*W x 1W * t!: TW I = : ]
ot Tamo b bW ! To' ' rlo (20)
_owr -, rc? _ G — — {R.R} - n
o= ), = —=q, F, E —==  h —,=
™ COnTonJ b o 10 WO {1 2} Tn H,
* (2
wherew* ==~ S , C A
K* r
Egs. (9) (12) take the following form (dropping the dashed for convenience)
2u 2 + 2 - e o T
au_z_fl: A lu (A*+A) P dA -A) BE R-C Ma Y T, 21
Mt A yh A HX A W XM XE t
n_? 2 + u - e T
NG u(d+A) HA -A) put o e _y% T 22
W A A ux A gt YH YE t
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Introducing potential functions defined by

T

& 2 5
6@1192-%1%9%53

& 2 5
a,D%y *geZDZ% au% 6s O
€ & M, LG8 3
SN . SN T
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we can obtain from Egs. (8) and (25)

h= -
where
_ﬁ A-A (A 'A) Qz IQZ I’fT_O 2 2
all_Al’aﬂ A& 1 843 B3\N*2 » Sy Bs , F‘*M'a ohz#nq’ r

The soluion of the considered physical variables can be decomposed in terms of normal modes as the following

form:

[i. ye, sam TIxy.D E (). O ). Oka um 0).T W)lexp( t iax)

where w is a complex constant aral is the wave number in the direction.
Using Eg. (32)Egs. (26)i (30)
(D*-a - g mT @
(D*-a° & W'ya-; 0O
a13(DZ' az)y ('Ij & Z{4 a15'2 )*SWC
(D’-a& n,)T - (& &) ¢

where

1 B
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(24
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a a 1+t w .
e oa oA Shon =g ()t w e e

Eliminatingy ", T  between Egs. (3683) weobtain

(D*-BD? B)@.T) €& (37)
and

gD'-B,D° B, g iy} @ (38)
where

B =2& 4, K *wn+ (39

B,=a" 4n, ¥ *wn+)de nbB+ (40)

B, =2& «a &) *wWa, aa (41)

B,=a' ta Ww2a, a;° wa) a (*2aw g,°) (42)

The solution of Egs. (37) and (38), which are bourfdeg > 0, are given by

2

q=a M@wye" (43)
=1

* 2 - k.y

T =a M;(a,vye ! (44)
j=

y' =AM, (a we (45)
n=3

5 A M@ we (46)

where M;(aw), Mj@aw), M (aw)and Mj(aw) are some parameters dependinga@md w. k?, (j=1,2) are the

roots of the characteristic equation of Eq. (37) &jd(n = 3,4) are the roots of the characteristic equation of Eq.
(38).
Using Egs. (43)(46) into Egs. (37) and (38) we get the following relations

2 - .
T =3 RM@a e
=1

(47)
i, A RM,(a ;e (48)
n=3
where
1.2 2
F"1.2:_8K1,2 & ¢ v (49)
n
1.2 2 2
R3,4:_8K3,4 a v
2 (50)

© 2013 1AU, Arak Branch



259 Effect of Magnetic Field and a Mode&Crack 3D-Problemé

The rootst2 and K;4 of Egs. (37) and (38), respectively are given by

1o &

K12,2 = E(Bl \ Bf 4'82)1 (51)
llg o[e 2B

K§,4 = E(Bs Bg 484) (52)

3 APPLICATION

The plane boundary subjects to an instantaneous normal point force and the boundary surface is isothermal, the
boundary conditionat the vertical plare = 0 and in the beginning of the crackat=0 ares,, = p(X), |><1 &

T=1(x), | <aand£:0, X >a
My

s, O, - X< <

53
m,. =0, - o x< < ( )

Using Eq(20), (25), (26)(29) on the nosdimensional boundary conditions and uskg(43), (45), (47)(48), we
obtain the expressions of displacements, force stress, coupled stress and temperatbuteomigbr micropolar
generalized thermoelastic medium with magnetic field as follows:

L R N
ry °
PR . .
:"“‘-_—2‘:;1 | =
o Displacement of an externadodei crack
L 2R 2NN A 2
u(y)=iaMe "’ H#aM,e™ kMg’ k;Me " (54)
V)= kMg kMe™ iaMe" kMek) (55)
S,0) mME™ gMe™  gMet g e (56)
SWY) FME ™ BMe™ rMe rMe (57)
m;z(Y)= 'Bg(k3R3M3é e I'('4R4M4é k4y )’\;2 / Ccf (58)
T y)=RMe Y R,M,e™? (59)
where

s=(d&A/C* A/ CF RA@ wy)ts (8A/-C* AK/ G R(t w)

s, =iaky (A -A) 1 @ s, iak (A A)I G, (60)
L =-iak(A R/ G, T, -RK(A AM G

,=(@A, R, (A;-A,) AR O, 1, (@A, R,AFA)+AK)/ G2
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Invoking the boundary conditions (53) at the surface0 of the plate, we obtain a system of four equations.
After applying theinverse of matrix method, we have the values of the four consgnts-1,2, and M, n=3,4.

Hence, we obtain the expressions of displacements, force stress, coupled stress and temperature distribution for
micropolar generalizkthermoelastic medium.

4 NUMERICAL RESULTS AND DISCUSSIONS

In order to illustrate the theoretical results obtained in preceding section and to compare these in the context of
various theories of thermoelasticity, we now present some numerical résults. calculation procesgje take the
case of magnesium crystal (Eringen) as material subjected to mechanical and thermal disturbances for numerical
calculationsconsidering the material medium as that of copper. Sincis, complex then we takew = y i+. The

other constants of the problem are takemvgas= 2,6= , The physical constants used ape=1, f =

r 4.74gm/cni, j 6.2 19" cm, 19.4= 18 dyne/cm, ,T 23 :
m .0 3G'dyne/cmi, K 150 1& dyne/ ch, @772 10 dYyne
K" =0.6 310° cal /cm sec°’C, C =0.23cal hm°C. a=2,t €

The results are shown in Figs-61 The graph shows the three curves predicted by different theories of
thermoelasticity. In thes€igures, the solid lines represent the solution in the Coupled theory, the dotted lines
represent the soluth in the generalized Lord and Shulman theory and dashed lines represent the solution derived
using the Green and Lindsay theory. ThEggires represent the solution obtained using the coupled theory (CD
theory: n,=0,n =ln, %§ 6 (), the generatied theory with one relaxation time (Lekdh ul man t heory
LS theory:n,=1,n =ln, % GO02t, 10, and generalized theory with two relaxation times (Glgadsay
theory (GL theory:n, =0,n =1n, %} GO0a, OX).

We notice that the results for the tempematthe displacement and stresses distribution when the relaxation time
is including in the heat equation are distinctly different from those when the relaxation time is not mentioned in heat
equation, because the thermal waves in the Fourier's theorgadfeguation travel with an infinite speed of
propagation as opposed to finite speed in theFaurier case. This demonstrates clearly the difference between the
coupled and the generalized theories of thermoelasticity. Fi§s.The graph shows the tweases when the
magnetic field acts on the material and when absence, frorkithiees, we obtain the effect of magnetic field
caused rearranged the atoms in thedium and compact the curvdsr the value of y, namely =0.2, were

substituted in performing the computation. It should be ndtegdl() that in this problem, the crack's sixeis taken
to be the length in this problem so th@i¢t x @ (when H; exist) and0¢ x @ )whenH,=0.0) , y=0

represents the plane of the crack that is symmetric with respect to fthen. It is clear from the graph that has

maximum value at the beginning of the atg(x =0), it begins to fall just near the crack edge=1), where it
experiences sharp decreases (with maximum negative gradient at the crack's end). The value of temperature quantity
converges to zero witim¢reasing the distance

Fig. 2, the horizontal displacement, begins with increase then smooth decreases again to reach its maximum
magnitude just at the crack end. Beyondiifalls again to try to retain zero at infinitfig. 3, the vertical
displacement, we see that the displacement componealtvays starts from the negative value and terminates at
the zero value. Also, at the crack end to reach minimum value, beyond reaching zero at the double of the crack size
(stateof particles equilibrium)The displacements andv show different behaviours, because of the elasticity of the
solid tends to resist vertical displacements in the problem under investigation. Both of the components show
different behaviours, the forméends to increase to maximum just before the end of the crack. Then it falls to a
minimum with a highly negative gradient. Afterwards it rises again to a maximum beyond about the crack end.
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0.03

Hjexsist

0.02

Temperature(T)

: : : : Fig. 1
! : ° 4 ° ° ! ° Variation of temperature distributiohwith different theories.

Distance(x)

The stresse componerd,  reach coincidence with negative vallgg(4) and satisfy the boundary condition at
x =0,reach the maximum value near the end of crack 1) and converges to zero with increasing the distance
Fig. 5, shows that the stress componejjtsatisfy the boundary condition & =0and had a different behaviour. It
decreases in the start and statr@ases (maximum) in the context of the three theories until reaching the crack end
(x° 1). These trends obey elastic and thermoelastic properties of the solid under investigation. Fig.6, the tangential
coupled stressn,, satisfies the boundary conditionXt=0.It decreases in the start and start increases (maximum)
in the context of the three theories then smooth decreasing until reaching the crack end. The effect of the magnetic
field down load the magnitude of the front of wave propagation.

0.03

Fig. 2
Variation of displacement distributianwith different
0.5 1 1.5 25 3 theOerS

Distance(x)

Fig. 3
Variation of displacement distributionwith different
theories

16 : : c c c
(o] 0.5 1 1.5 2 25 3

Distance(x)
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Hoexlst

Fig. 4
0025, s 1 s 2 25 3 Variation of stress distributios.. with differenttheories.
Distance(x) i

Fig. 5
Variation of stress distributios , atwith differenttheories

Distance(x)

cb ]
Ls
-GL
Hexsist l
0
Fig. 6
o 0z o4 06 o8 1 ()1-2 14 16 18 2 Variation of tangentiecouple stressm, with different
istance(x
theories

Fig. 7-15 show the comparison between the temperatudisplacement componentsV , the force stresses
components,, §,, and the tangential coupled stresg, the case of different three values of y, (namely y= 0.1,
y=0.2 and y=0.3) under GL theory. It should be noted (Fig.7) that in this problem. It is clear from the graph that
has maximum value at the beginning of the craxk Q), it begins to fall just near the crack edge<1), where it
experiences sharp decreases (with maximum negative gradient at the crack's end). Graph lines for both values of y
show different slopes at crack ends according-talyes. In other words, the temperature line for y = 0.1 has the
highest gradient when compared with that of z = 0.2 and z= 0.3 at the first of the range. In addition, all lines begin to

© 2013 1AU, Arak Branch



263 Effect of Magnetic Field and a Mode&Crack 3D-Problemé

coincide when the horizontal distance x is beyond the double of the sizgcto reach the reference temperature of
the solid. These results obey physical reality for the behaviour of copper as a polycrystalline solidy alshow
Fig: 8.

Fig. 9, the horizontal displacement u, despite the peaks (for different veititaalabs y=0.1, y=0.2 and y=0.3)
occur at equal value of x, the magnitude of the maximum displacement peak strongly depends on the vertical
distance ylt is also clear that the rate of change of u decreases with increasing y as we go farther apagt from th
crackFig. 10. On the other han#ig. 11 shows atonable increase of the vertical displacement, v, near the crack end
to reach maximum value beyond=1 reaching zero at the double of the crack $&tate of particles equilibrium).

Fig.12, the vertical stresses, Graph lines for both values of y show different slopes at crack ends according to y
values. In other words, the, component line for y = 0.1 has the lowest gradient when comparedhattiof y =

0.2 and y= 0.3 at the edge of the crack. In addition, all lines begin to coincide when the horizontal distance x is
beyond the double of the crack size to reach zero after their relaxations at infinity. Variation of y has a serious effect
on bah magnitudes of mechanical stresses. These trends obey elastic and thermoelastic properties of the solid under
investigation.

Fig. 13, shows that the stress comporept satisfy the boundary condition, the line for z = 0.3 has thieisig

gradient when compared with that of z = 0.2 and z= 0.1 and converge to zerxwt&nThese trends obey elastic
and thermoelastic properties of the solidsishown also inFig. 14. Fig. 15, the tangential coupled strasgy it
increases in the start and start decreases in the context of the three valuastibfeaching the crack end, fgr=

0.1 has the highest gradient when compared with that of z = 0.2 and z= 0.3 at the edgeackth@l lines begin
to coincide when the horizontal distance x is beyond the edge of the crack.

//

/ ] Fig. 7

- . ] , , Temperature distributioff with variation of distancesnder
05 1 15 2 25 3 GL theory
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\
-0.02~ \
\

-0.03~

-0.04
0

Fig. 8
Temperature distributioil with variation of distancesinder
Distance(x) GL theory in 3D

-0.04 O
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Fig. 13
Stress distributiors xy, with variation of distancender GL

[¢] o.rs i 1.r5 é 2.r5 3 theory

Distance(x)

Fig. 14
Stress distributiors xy, with variation of distancender GL

theory.

12

y=0.1

Fig. 15
Tangential couple stregsiyy with variation of distance

under GL theory.

1
Distance(x)

Finally The Figs. 16-21 shows the 3D plots for the physical components under-koindu | man ththe or y wi
effect of magnetic fieldFig. 16 Shows the variation of the temperature and the depth with increasigr the
effects of magnetic field, which it decreases with increasing of wave speed until approaching to zero, as well it
decreases with dezasing of the value of depthig. 17 Shows the variation of two horizontal displaceneand
the depth with increasingunder the décts of magnetic field. The value of the displacemeobmponents has an
oscillatory behavior with magnetic field in the whole range of the magnetic field. Fig. 18 Shows the variation
vertical displacement and the depth with increasimgwhen the wave translate from a side to another through the
crack (as two layers)) waves under the effects of magfietd. The effect of magnetion vertical displacement
wave which it decreases and increases periodically, as well it decreases with incredsngabfe of wave speed.
Fig. 19 Show the variation of normal stresg, in 3D under the effect aihagnetic field. The effect of magnetic

field on normal stress which it oscillatory behavior with increasing of magnetic feldyell it decreases with
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increasing of the value ofave speed. Fig. 20 Show the variation of stress compangntThe value of the stress
components,, has an oscillatory behavior with magnetic field in the whainge of th@hase velocityFig. 21, the
tangential coupled stress, in 3D, it increases in the start and start decreases in the context of the three values of
y until reaching the crack end,

The thermo-dynamical heat distrbution in 3D

Fig. 16
Temperaturedistribution T with variation of distances
under GL theory and magnetic field.

Fig. 17
3D displacement componeatwith variation of distances
under GL theory and magnetic field.

Fig. 18
3D displacement coponentv with variation of distances
under GL theory and magnetic field.
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