• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Solid Mechanics
Articles in Press
Current Issue
Journal Archive
Volume Volume 9 (2017)
Volume Volume 8 (2016)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 7 (2015)
Volume Volume 6 (2014)
Volume Volume 5 (2013)
Volume Volume 4 (2012)
Volume Volume 3 (2011)
Volume Volume 2 (2010)
Volume Volume 1 (2009)
Loghman, A., Parsa, H. (2016). Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder. Journal of Solid Mechanics, 8(1), 31-44.
A Loghman; H Parsa. "Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder". Journal of Solid Mechanics, 8, 1, 2016, 31-44.
Loghman, A., Parsa, H. (2016). 'Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder', Journal of Solid Mechanics, 8(1), pp. 31-44.
Loghman, A., Parsa, H. Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder. Journal of Solid Mechanics, 2016; 8(1): 31-44.

Closed Form Solution for Electro-Magneto-Thermo-Elastic Behaviour of Double-Layered Composite Cylinder

Article 3, Volume 8, Issue 1, Winter 2016, Page 31-44  XML PDF (693 K)
Document Type: Research Paper
Authors
A Loghman orcid ; H Parsa
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Islamic Republic of Iran
Abstract
Electro-magneto-thermo-elastic response of a thick double-layered cylinder made from a homogeneous interlayer and a functionally graded piezoelectric material (FGPM) outer layer is investigated. Material properties of the FGPM layer vary along radius based on the power law distribution. The vessel is subjected to an internal pressure, an induced electric potential, a uniform magnetic field and a temperature gradient. Stresses and radial displacement are studied for different material in-homogeneity parameters in the FGPM layer. It has been shown that the material in-homogeneity parameters  significantly affect the stress distribution in both layers. Therefore by selecting a suitable material parameter  one can control stress distribution in both homogeneous and FGPM layers. It has been found that under electro-magneto-thermo-mechanical loading minimum effective stress can be achieved by selecting  in the FGPM layer.
Keywords
Closed form solution; Electromagnetothermoelastic; Double-walled cylinder; Homogeneous interlayer; FGPM outer layer
References
[1] Nie G.J., Batra R.C., 2010, Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders, Composite Structures 92: 265-274.
[2] Babaei M.H., Chen Z.T., 2008, Analytical solution for the electromechanical behaviour of a rotating functionally graded piezoelectric hollow cylinder, Archive of Applied Mechanics 78: 489-500.
[3] Saadatfar M., Razavi A.S., 2009, Piezoelectric hollow cylinder with thermal gradient, Journal of Mechanical Science and Technology 23: 45-53.
[4] Ghorbanpour Arani A., Kolahchi R., Mosallaie Barzoki A.A., 2010, Effect of material inhomogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft, Applied Mathematical Modelling 36: 2771-2789.
[5] Ghorbanpour Arani A., Loghman A., Abdollahitaheri A., Atabakhshian V., 2010, Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder, Journal of Mechanics of Materials and Structures 6(6): 869-884.
[6] Haghpanah Jahromi B., Ajdari A., Nayeb-Hashemi H., Vaziri A., 2010, Autofrettage of layered and functionally graded metal–ceramic composite vessels, Composite Structures 92( 8): 1813-1822.
[7] Mithchell J.A., Reddy J.N., 1995, A study of embedded piezoelectric layers in composite cylinders, Journal of Applied Mechanics 62:166-173.
[8] Wang H.M., Ding H.J., Chen Y.M., 2005, Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems, International Journal of Solids and Structures 42:85-102.
[9] Yin X.C., Yue Z.Q., 2002, Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse, Journal of Applied Mechanics 69: 825-835.
[10] Dai H.L., Fu Y.M., 2007, Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads, International Journal of Pressure Vessels and Piping 84(3): 132-138.
[11] Dai H.L., Rao Y.N., 2013, Dynamic thermoelastic behavior of a double-layered hollow cylinder with an FGM layer, Journal of Thermal Stresses 36( 9): 962-984.
[12] Loghman A., Parsa H., 2014, Exact solution for magneto-thermo-elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer, International Journal of Mechanical Sciences 88: 93-99.
[13] Hosseini S.M., Akhlaghi M., Shakeri M., 2007, Transient heat conduction in functionally graded thick hollow cylinders by analytical method, International Journal of Heat and Mass Transfer 43: 669-675.
[14] Loghman A., Ghorbanpour Arani A., Amir S., Vajedi S., 2010, Magnetothermoelastic creep analysis of functionally graded cylinders, International Journal of Pressure Vessel and Piping 87: 389-395.
[15] Dai H.L., Hong L., Fu Y.M., Xiao X., 2010, Analytical solution for electromagnetothermoelastic behaviors of a functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling 34(2): 343-357.

Statistics
Article View: 774
PDF Download: 549
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.