The Effect of Elastic Foundations on the Buckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal Environments Using a Meshfree Method

Document Type: Research Paper

Authors

Faculty of Mechanical Engineering, University of Kashan

Abstract

The buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane loads for various temperatures is investigated using element-free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The modified shear correction factor is used based on energy equivalence principle. Carbon nanotubes (CNTs) are embedded in polymer matrix and distributed in four types of arrangements. The temperature-dependent material properties of an FG-CNTRC plate are assumed to be graded along the thickness direction of the plate and estimated through a micromechanical model based on the extended rule of mixture. Full transformation approach is employed to enforce essential boundary conditions. The modified shear correction factor is utilized based  on  energy  equivalence  principle involving  the  actual  non-uniform  shear  stress  distribution  through  the  thickness  of  the  FG-CNTRC plate. The accuracy and convergency of the EFG method is established by comparing the obtained results with available literature. Moreover, the effects of elastic foundation parameters are investigated for various boundary conditions, temperatures, plate width-to-thickness and aspect ratios, and CNT distributions and volume fractions. Detailed parametric studies demonstrate that the elastic foundation parameters, CNT distributions along the thickness direction of the plate and the temperature change have noticeable effects on buckling behavior of carbon nanotube-reinforced composite (CNTRC) plates.

Keywords

[1] Alibeigloo A., Liew K. M., 2013, Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity, Composite Structures 106: 873-881.
[2] Belytschko T., Lu Y. Y., Gu L., 1994, Element-free Galerkin methods, International Journal of Numerical Methods in Engineering 37: 229-256.
[3] Bonnet P., Sireude D., Garnier B., Chauvet O., 2007, Thermal properties and percolation in carbon nanotube–polymer composites, Journal of Applied Physics 91: 2019-2030.
[4] Chen J., Chunhui P., Wu C., Liu W., 1996, Reproducing kernel particle method for large deformation of nonlinear structures, Computer Methods in Applied Mechanics and Engineering 139:195-227.
[5] Esawi A. M., Farag M. M., 2007, Carbon nanotube reinforced composites: potential and current challenges, Materials & Design 28: 2394-2401.
[6] Fidelus J. D., Wiesel E., Gojny F. H., Schulte K., Wagner H. D., 2005, Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites Part A 36:1555-1561.
[7] Han J. B., Liew K. M., 1997, Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations, International Journal of Mechanical Sciences 39(9): 977-989.
[8] Han Y., Elliott J., 2007, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science 39: 319-323.
[9] Hu N., Fukunaga H., Lu C., Kameyama M., Yan B., 2005, Prediction of elastic properties of carbon nanotube reinforced composites, Proceeding Royal Society of London A 461: 1685-1710.
[10] Huang Z. Y., Lü C. F., Chen W. Q., 2008, Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations, Composite Structures 85(2): 95-104.
[11] Valter B., Ram M.K., Nicolini C., 2002, Synthesis of multiwalled carbon nanotubes and poly (o-anisidine) nanocomposite material: Fabrication and characterization of its Langmuir-Schaefer films, Langmuir 18(5):1535-1541.
[12] Jafari Mehrabadi S., Sobhani Aragh B., Khoshkhahesh V., Taherpour A., 2012, Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes, Composites Part B-Engineering 43(4): 2031-2040.
[13] Malekzadeh P., Shojaee M., 2013, Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers, Thin-Walled Structures 71: 108-118.
[14] Shen H. S., 2009, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures 91(1): 9-19.
[15] Zhu P., Lei Z. X., Liew K. M., 2012, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures 94(4): 1450-1460.
[16] Sobhani Aragh B., Nasrollah Barati A.H., Hedayati H., 2012, Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels, Composites Part B-Engineering 43(4): 1943-1954.
[17] Alibeigloo A., Liew K.M., 2013, Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity, Composite Structures 106: 873-881.
[18] Moradi-Dastjerdi R., Foroutan M., Pourasghar A., Sotoudeh-Bahreini R., 2013, Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method, Journal of Reinforced Plastic and Composites 32(9): 593-601.
[19] Lei Z. X., Liew K. M., Yu J. L., 2013, Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method, Computational Methods in Applied Mechanics and Engineering 256: 189-199.
[20] Lei X. Z., Liew K. M., Yu J. L., 2013, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Composite Structures 98: 160-168.
[21] Shen H. S., Xiang Y., 2014, Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Composite Structures 111: 291-300.
[22] Lam K. Y., Wang C. M., He X. Q., 2000, Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions, Engineering Structures 22: 364-378.
[23] Han J.B., Liew K.M., 1997, Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations, International Journal of Mechanical Sciences 39(9): 977-989.
[24] Winkler E., 1867, Die Lehre von der Elasticitaet und Festigkeit, Prag, Dominicus.
[25] Pasternak P. L., 1954, On a new method of analysis of an elastic foundation by means of two foundation constants , Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow.
[26] Huang Z.Y., Lü C.F., Chen W.Q., 2008, Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations, Composite Structures 85(2): 95-104.
[27] Zhang D. G., 2013, Nonlinear bending analysis of FGM rectangular plates with various supported boundaries resting on two-parameter elastic foundations, Archive of Applied Mechanics 84(1): 1-20.
[28] Shen S. H., Wang H., 2014, Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments, Composites Part B: Engineering 60: 167-177.
[29] Singha M. K., Prakash T., Ganapathi M., 2011, Finite element analysis of functionally graded plates under transverse load, Finite Element in Analysis and Design 47(4): 453-460.
[30] Belytschko T., Lu Y.Y., Gu L., 1994, Element-free Galerkin methods, International Journal of Numerical Methods in Engineering 37: 229-256.
[31] Zhu T., Atluri N.,1998, A modified collocation method and a penalty function for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mechanics 21: 211-222.
[32] Chen J.S., Chunhui P., Wu C.T., Liu W.K., 1996, Reproducing kernel particle method for large deformation of nonlinear structures, Computational Methods Applied Mechanics and Engineering 139: 195-227.
[33] Memar Ardestani M., Soltani B., Shams Sh., 2014, Analysis of functionally graded stiffened plates based on FSDT utilizing reproducing kernel particle method, Composite Structures 112: 231-240.
[34] Malekzadeh P., Golbahar Haghighi M. R., Alibeygi Beni A., 2011, Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations, Meccanica 47(2): 321-333.
[35] Shen H. S., Zhang C. L. , 2010, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Materials & Design 3(7): 3403-3411.