An Exact Solution for Vibration Analysis of Soft Ferromagnetic Rectangular Plates Under the Influence of Magnetic Field with Levy Type Boundary Conditions

Document Type: Research Paper

Authors

Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

In this paper vibration of ferromagnetic rectangular plates which are subjected to an inclined magnetic field is investigated based on classical plate theory and Maxwell equations. Levy type solution and Finite element method using Comsol software are used to obtain the frequency of the plate subjected to different boundary conditions, good agreements is obtained when computed results are compared with those obtained by Comsol software, the results have shown that the frequency of the plates increases with the magnetic field and the effect of magnetic field is similar to the Winkler’s foundation.

Keywords


[1] Moon F. C., 1984, Magneto-Solid Mechanics, Wiley New York etc.
[2] Eringen A. C., 1989 ,Theory of electromagnetic elastic plates , International Journal of Engineering Science 27(4): 363-375.
[3] Liang W., Soh Ai K., Hu R., 2007 ,Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field , International Journal of Mechanical Sciences 49(4): 440-446.
[4] Moon F.C., Pao Y.H., 1968, Magnetoelastic buckling of a thin plate, Journal of Applied Mechanics 35(8):53-58.
[5] Yang W., Pan H., Zheng D., Cai Q., 1999, An energy method for analyzing magnetoelastic buckling and bending of ferromagnetic plates in static magnetic fields, Journal of applied mechanics 66(4): 913-917.
[6] Ohj T ., Shinkai T., Amei K., Sakui M ., 2007, Application of Lorentz force to a magnetic levitation system for a non-magnetic thin plate , Journal of Materials Processing Technology 181(1-3):40-43.
[7] Hoffmann T., Chudzicka-Adamczak M., 2009, The Maxwell stress tensor for magnetoelastic materials, International Journal of Engineering Science 47(5): 735-739.
[8] Eringen C., 1989 , Theory of electromagnetic elastic plates, International Journal of Engineering Science 27(4):365-375.
[9] Griffiths D. J., College R., 1999, Introduction to Electrodynamics, Prentice Hall New Jersey.
[10] Wang X., Sehlee J., 2006, Dynamic stability of ferromagnetic plate under transverse magnetic field and in-plane periodic compression , International Journal of Mechanical Sciences 48(8): 889-898.
[11] Liang W., Soh Ai K., Hu R., 2007 , Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field, International Journal of Mechanical Sciences 49(4): 440-446.
[12] Goudjo C., Maugin G., 1983, On the static and dynamic stability of soft-ferromagnetic elastic plates, Journal de Mécaniquethéorique et Appliquée 2(6): 947-975.
[13] Chen W., Kang Yong L., Ding H.J., 2005, On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates, Journal of Sound and Vibration 279(1): 237-251.
[14] Yih-Hsing P., Chau-Shioung Y., 1973, A linear theory for soft ferromagnetic elastic solids, International Journal of Engineering Science 11(4): 415-436.
[15] Ven A., 1978, Magnetoelastic buckling of thin plates in a uniform transverse magnetic field , Journal of Elasticity 8(3): 297-312.
[16] Yuda H., Jing L. , 2009, The magneto-elastic subharmonic resonance of current-conducting thin plate in magnetic filed , Journal of Sound and Vibration 319(3): 1107-1120.
[17] Wang X., Lee J.S., Zheng X., 2003, Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields , International Journal of Solids and Structures 40(22): 6125-6142.
[18] Goudjo C., Maugin G., 1983, On the static and dynamic stability of soft-ferromagnetic elastic plates, Journal de Mécaniquethéorique et Appliquée 2(6): 947-975.
[19] Li X.Y., Ding H.J., Chen W.Q., 2008 , Three-dimensional analytical solution for functionally graded magneto–electro-elastic circular plates subjected to uniform load ,Composite Structures 83(4): 381-390.
[20] Golubeva T. N., Korobkov Y. S., Khromatov V. E., 2013, Influence of a longitudinal magnetic field on the vibration frequencies of ferromagnetic plates, Russian Electrical Engineering 84(3): 155-159.