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 ABSTRACT 

 In this study, the buckling and free vibration of Timoshenko beams resting on variable 

elastic foundation analyzed by means of a new finite element formulation. The Winkler 

model has been applied for elastic foundation. A two-node element with four degrees of 

freedom is suggested for finite element formulation. Displacement and rotational fields 

are approximated by cubic and quadratic polynomial interpolation functions, 

respectively. The length of the element is assumed to be so small, so that linear 

variation could be considered for elastic foundation through the length of the element. 

By these assumptions and using energy method, stiffness matrix, mass matrix and 

geometric stiffness matrix of the proposed beam element are obtained and applied to 

buckling and free vibration analysis. Accuracy of obtained formulation is approved by 

comparison with the special cases of present problem in other studies. Present 

formulation shows faster convergence in comparison with conventional finite element 

formulation. The effects of different parameters on the stability and free vibration of  

Timoshenko beams investigated and results are completely new.                                    

 © 2017 IAU, Arak Branch. All rights reserved. 
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1    INTRODUCTION 

 EAMS are fundamental component in engineering and have wide applications in structures and machines 

design and fabrication. They are also used as simple and accurate model for analysis of complex engineering 

structures. Three well-known theories have been developed for beams analysis. In the primary and widely used 

theory, the beams considered as thin or Euler-Bernoulli beam which means the length of beams at least 10 times 

larger than the height. For this model, the rotation of cross-section and distortion due to shear is neglected compared 

to the translation and the bending deformation, respectively [1]. The inertia due to the axial displacement of the 

beam or rotary inertia effect, is considered in Rayleigh’s theory. The third theories, evaluates the effects of rotary 

inertia and shear deformation and called Timoshenko theory. The Euler-Bernoulli model has simple mathematical 

model for handling and closed form solution could be obtain by this model, but results only valid for thin beams and 

significant discrepancy observed for short or thick beams in this model. The Timoshenko model has complex 

mathematical model rather than other theories, while results of this model are very accurate for short and thick 

beams. There are other models developed for beams which includes warping of the cross-section and allow variation 
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in the longitudinal direction like Levinson [2] and Bickford [3] theories. Many studies have been presented for 

dynamical analysis of beams by using Timoshenko theory. Rossi and Laura [4] presented analytical solution of the 

free vibration of Timoshenko beams carrying elastically mounted masses. The exact solution of the vibration and the 

stability analysis for a non-uniform Timoshenko beam subjected to axial and distributed tangential loads has been 

presented by Esmailzadeh and Ohadi [5]. Lee and Schultz [6] employed the Chebyshev pseudospectral method to 

study of the free vibration of Timoshenko beams and axisymmetric Mindlin plates. Finite element formulation has 

been derived by Moallemi-Oreh and Karkon [7] for stability and free vibration analysis of Timoshenko beams. They 

used simple two-node elements and assumed that shear strain of the element has the constant value. Constant shear 

strain assumption let them to consider the polynomial interpolation functions with un-known coefficients while in 

previous work by Yokoyama [8], the known value introduced in interpolation function for bending rotation. Lee and 

Park [9] developed a thick beam element by using isogeometrical approach for the free vibration analysis of 

Timoshenko beams. Using the non-local elasticity theory, Timoshenko beam model is developed by 

Mohammadimehr et al. [10] to study the elastic buckling of double-walled carbon nanotubes (DWCNTs) embedded 

in an elastic medium under axial compression and so on [11-13]. 

It is obvious that the correct analysis and design of structures required an understanding of soil-structure 

interaction. The surrounding soil increase resistance of buried structures such as pipelines and significantly change 

dynamical behavior of structures. Many practical cases in engineering related to soil-structure interaction can be 

modeled by means of a beam on elastic foundation. The well-known models for elastic foundations are Winkler and 

Pasternak. The Winkler model of elastic foundation is the most preliminary in which the vertical displacement is 

assumed to be proportional to the contact pressure at an arbitrary point [14], in another words, the foundation 

modeled as a series of closely spaced and mutually independent linear elastic springs. Pasternak model or two-

parameter foundation adds shearing layer to Winkler model, where shearing layer play a role same as axial load in 

equation of motion. Mentioned model has been used for different problems of beams and plates that resting on 

elastic foundation [15-23]. Usually, researchers assumed that the foundation has constant value through the length of 

the beam length and only limited studies exist for dynamic analysis of beams on variables foundations. Eisenberger 

and Clastornik [24] studied free vibration and buckling of the Euler-Bernoulli beams on variables Winkler 

foundation, also, they studied free vibration and buckling of the Euler-Bernoulli beams on variables Pasternak 

foundation [25]. Zhou [26] by considering the reaction force of the foundation on the beam as the external force 

acting on the beam derived a general solution to vibrations of the Euler-Bernoulli beams on variables Winkler 

foundation. Differential quadrature method applied by Pradhan and Murmu [27] to thermo-mechanical vibration 

analysis of sandwich beam resting on variable Winkler foundation. Kacar et al. [28] studied free vibration of the 

Euler-Bernoulli beams on variables Winkler foundation by means of semi-analytical approach which called 

differential transform method (DTM). Teodoru and Musat [29] derived mass, stiffness and geometrical matrices for 

the Euler-Bernoulli beam on linear variables Pasternak foundation by Galerkin based finite element. 

According to literature survey, the stability and free vibration analysis of Timoshenko beam resting on variable 

elastic foundation has not been studied before and for the first time is studied in this paper. At first, a new finite 

element (FE) formulation derive for Timoshenko beams by two-node elements with the constant shear value and 

linear variation for elastic foundation through the length of the element assumptions. Then, comparisons are made 

with studies in open literature in which special cases of present problem have been studied and very good agreement 

observed. Finally, some new and more useful results extracted from present formulation. 

2    FINITE ELEMENT FORMULATION   

Consider a beam under axial load and resting on variable Winkler foundation as shown in Fig. 1. The beam has 

length L, rectangular cross section with height of h and width of w. The beam made from homogenous and isotropic 

material with E as modulus of elasticity, G as the shear modulus and ras mass per unit volume. A beam element 

with length of l is depicted in Fig. 2. The beam element has two nodes, in which two degrees of freedom associated 

with the degree of freedom of transverse displacement and bending rotation considered for each node. Length of the 

element is assumed to be so small, so that we are able to consider a linear variation for elastic foundation. Following 

the work by Moallemi-Oreh and Karkon [7], it is assumed that shearing strain has the constant value. A cubic 

polynomial interpolation function considered for displacement field as follow: 
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In which 0a  to 3a  are unknown constant. In Timoshenko beam theory, the shear deformation is equal to q-
µ

µ

x

y
, 

where q is the bending rotation. It is clear displacement derivation with respect to x in the shear strain formula, 

reduced order of polynomial in Eq. (1); therefore a polynomial with same power should be consider for the bending 

rotation as follow: 

 
2

210 xbxbbe ++=q  (2) 

 

In which 0b  to 
2b are unknown constant. The constant value assumption for the shear strain considered as 

follow: 
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where 
0f is a constant value. The unknown constants in Eq. (1) and Eq. (2) determined from nodal variables at two 

ends of the element and using Eq. (3) as follows: 
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Now, only one constant remain unknown in formulation which is 0f. By using the condition of minimum strain 

energy in element, the value of 0f could be determined. The strain energy in Timoshenko beam element without 

foundation is the sum of bending and shear strain energies and calculated as following: 

 

ññ -
µ

µ
¡+

ö
ö

÷

õ

æ
æ

ç

å

µ

µ
=P

l e
e

l
e

e
Strian dx

x

y
GAkdx

x
EI

0

2

2

0
)(

2

1

2

1
q

q
 

 

(11) 

 

where A is the area of cross-section, I is the cross-sectional moment of inertia and k¡is shear correction factor. The 

strain energy of element obtained from substituting Eqs. (2-10) into Eq. (5), then, for minimizing strain energy, the 

following stationary condition is applied: 
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which yields the following expression for the constant value of shear strain: 
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Substituting Eqs. (4-10) and Eq. (13) into Eq. (1) and Eq. (2) yields the shape functions for Timoshenko beam 

element as following: 
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As mentioned before, a linear variation considered for elastic foundation through the length of the element, if the 

stiffness of foundation be 1k  at the left node ( 0=x ) and be 2k  at the right node ( lx= ), then, the following 

function considered for variation of foundation through the length of the element: 
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The strain energy of the Timoshenko beam element with elastic foundation effect written as following: 
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The kinetic energy of the Timoshenko beam element with inclusion of the rotary inertia effect is given by 
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The external work done by a compressive axial load (positive for tension) can be written as: 
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Obtained expressions for the strain energy, the kinetic energy and the external work, re-write in terms of the 

element displacement vector ( }{ eD ) as: 
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In Eqs.(29-31), [ ] ,[ ] ,[ ] ,[ ] ,[ ]e e e e e

b s f t rK K K M M and e
gK ][ are bending stiffness matrix, shear stiffness matrix, 

stiffness matrix due to the elastic foundation, translational mass matrix, rotary inertia mass matrix and geometric 

stiffness matrix, respectively. These matrices defined as follows: 
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The explicit expressions for matrices in Eq.(32)-Eq. (37) are listed in Appendix. 

To derive equation of motion, Lagrangian function is defined as follows: 
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ä +-P= )( eee WTL  (38) 

 

Inserting Lagrangian function in Eq. (38) into Hamilton’s principle [8] and by using Eqs. (29-31) leads to the 

governing equation of motion in matrix form as follows: 
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where ][M is global consistent mass matrix, in the following form: 
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and ][K is global stiffness matrix, in the following form: 

 

ä -++= )][][][]([][ e
g

e
f

e
s

e
b KKKKK  (41) 

 

By harmonic motion assumption with circular frequencyw, equation of motion in (39) is changed to: 
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Eq. (42) is an eigenvalue problem, in which for the non-trivial solution, it is necessary that the determinant of the 

coefficient matrix is set equal to zero. Obtained eigenvalues are corresponding to natural frequencies of vibration. 

For determination of the critical buckling load, the following eigenvalue will be achieved: 
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The lowest positive eigenvalue of Eq. (43) is the critical buckling load. 

 

 

 

 

 

 

Fig.1 
A Timoshenko beam resting on variable elastic foundation. 

  

 

 

 

 

 

Fig.2 
A two-node beam element, resting on variable elastic 

foundation.  

 

3    NUMERICAL RESULTS 

A computer code has been developed in Matlab software to calculate numerical results. As same as other studies, 

some dimensionless parameters defined to better representation of the numerical results. A general form for variable 

Winkler foundation considered as follows: 
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In Eq. (44), )(
L

x
f is a dimensionless function which shows variation of elastic foundation through the length of 

the beam, also, wK is a dimensionless parameter which known as dimensionless moduli of Winkler foundation. 

When the beam discretized over its length by two node elements, the effective value of elastic foundation at each 

node calculated from Eq. (44) and then stiffness matrix obtained from Eq. (34) for each element. Dimensionless 

axial load, defined as follows: 
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After calculation natural frequencies from eigenvalue problem in Eq. (42), dimensionless frequencies obtained as 

follows: 
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AL 24
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To validate the obtained finite element formulation, the first three dimensionless frequencies of the Euler-

Bernoulli beam resting on variable Winkler foundation with linear and parabolic distribution under different 

boundary conditions studied by the differential transform method [28] are re-examined and results are presented in 

Table 1. Very good agreement between results can be observed, which confirmed accuracy of proposed element for 

the beam on variable Winkler foundation. It should be noted, obtained FE formulation is applicable for the Euler-

Bernoulli beams when L in Eq. (13) is set equal to zero and e
rM ][ is omitted. 

 

Table 1 

Dimensionless frequencies of the Euler-Bernoulli beam resting on variable Winkler foundation. 

 

 

B.C. 
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L

x

L

x
f  

1b  2b  3b  1b  2b  3b  

H-H Present 3.699 6.372   9.452 3.721 6.375   9.453 

Kacar et al. [28] 3.699 6.372   9.452 3.721 6.375   9.453 

C-C Present 4.930 7.899 11.013 4.939 7.901 11.013 

Kacar et al. [28] 4.930 7.899 11.013 4.939 7.901 11.013 

 

For all the subsequent results, the Poisson’s ratio is 3.0=v and shear correction factor is taken 5
6

. The first 

three dimensionless frequencies of Timoshenko beams with hinged-hinged and clamped-clamped boundary 

conditions calculated by presented FE formulation and compared with other well-known studies in Table 2. The 

exact solution of beam critical buckling load with shear deformation effect is obtained as succeeding form [30]: 
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where effL  is the effective beam length in which , 2eff effL L L L= = and LLeff 5.0= are used for hinged-hinged 

boundary condition, clamp-free boundary condition and clamped-clamped boundary condition, respectively. Critical 

buckling load for different ratios of height to length calculated by presented FE formulation and analytical solution 

in Eq. (47) and convert to dimensionless form by using Eq. (45). Obtained results for dimensionless critical buckling 

load are presented in Table 3. Very good accuracy can be seen for presented FE formulation for buckling and free 

vibration analysis of Timoshenko beams, as shown in Table 2. and Table 3. 
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Table 2 

 Dimensionless frequencies of the Timoshenko beam without elastic foundation 

 

B.C. 

 5L h=  hL 10=  

1b  2b  3b  1b  2b  3b  

H-H Present 3.045 5.672 7.840 3.116 6.091 8.841 

Lee and Schultz [6] 3.045 5.672 7.839 3.116 6.091 8.841 

Attar et al. [22] 3.045 5.672 7.840 - - - 

C-C Present 4.242 6.418 8.287 4.580 7.331 9.857 

Lee and Schultz [6] 4.242 6.418 8.285 4.580 7.331 9.856 

 

 

Table 3 

 Dimensionless critical buckling load of the Timoshenko beam without elastic foundation 

B.C. C-F H-H C-C 

 Present Analytical Present Analytical Present Analytical 

Lh 1.0=  2.45167 2.45167 9.6227 9.6227 35.8044 35.8034 

Lh 2.0=  2.40567 2.40567 8.9508 8.9508 27.9894 27.9875 

Lh 3.0=  2.33272 2.33272 8.0179 8.0179 20.5228 20.5211 

 

In order to show efficiency of present FE formulation to conventional FE formulation, a comparison between 

convergence rates of two methods has been made for first two dimensionless frequencies of hinged-clamped 

Timoshenko beam resting on variable elastic foundation with following distribution: 
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x x
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Results are depicted in Fig. 3 where faster convergence rates of present FE formulation are observed. Seven 

different types of distribution considered for foundation, where one type is constant distribution and other six types 

of distribution are plotted in Fig. 4. For all types of foundation distribution, the average value of the variable 

Winkler foundation is same and equal to 2, also, the dimensionless moduli of Winkler foundation is same for all 

distribution types. The average value of the variable Winkler foundation has been defined as follows: 
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First mode 

 
Second mode 

Fig.3 
Comparison between convergence rates of present and conventional FE formulation ( 10L h= ). 

 

The effects of the Winkler foundation distribution and ratio of height to length of beams on first four 

dimensionless frequencies investigated in Tables 4-7. Results obtained for four different kinds of boundary 

conditions i.e. C-F, H-H, C-C and H-C. It is obvious, for all kinds of boundary conditions; the first dimensionless 

frequency is strongly depend on Winkler foundation distribution, despite the fact that the average value of the 

variable Winkler foundation and the dimensionless moduli of Winkler foundation are same for all types of 

distribution. For C-F boundary condition (Table 4), Winkler foundation distribution like those presented for Case 1 
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and Case 2 in Fig. 4 yield the maximum value for fundamental frequency for both the Euler-Bernoulli and 

Timoshenko beam theories. For other kinds of boundary conditions which investigated in Tables 5-7., Winkler 

foundation distribution like those presented for Case 4 and Case 5 in Fig. 4 yields the maximum value for 

fundamental frequency for both the Euler-Bernoulli and Timoshenko beam theories. It seems the maximum 

fundamental frequency occurred when Winkler foundation distribution is closed to fundamental mode shape of the 

beam; which depend on boundary conditions of the beam. Also, it is clearly obtained from Tables 4-7. that third and 

fourth frequencies are not sensitive to Winkler foundation distribution. 

 
Table 4 

Dimensionless frequencies of beams resting on variable elastic foundation under C-F boundary conditions ( 100=wK ). 

Theory Mode Constant Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Euler-Bernoulli 1st 3.8174 4.0592 4.1759 3.9329 3.5197 3.3389 3.6698 

2nd 5.1169 5.1548 5.1780 5.1117 5.1782 5.2444 5.1591 

3rd 7.9560 7.9593 7.9604 7.9528 7.9602 7.9606 7.9561 

4th 11.033    11.034    11.034     11.032     11.034     11.034     11.034     

Timoshenko 
hL 15=  

1st 3.8155 4.0569 4.1723 3.92874 3.5158 3.3336 3.6672 

2nd 5.0694 5.1066 5.1298 5.0639 5.1338 5.2014 5.1132 

3rd 7.7486 7.7512 7.7519 7.7453 7.7530 7.7531 7.7486 

4th 10.520    10.520     10.520     10.519     10.521    10.521     10.521    

Timoshenko 
hL 5.7=  

1st 3.8099 4.0503 4.1618 3.9166 3.5043 3.3177 3.6594 

2nd 4.9453 4.9803 5.0037 4.9389 5.0187 5.0900 4.9938 

3rd 7.2780 7.2786 7.2783 7.2743 7.2829 7.2819 7.2777 

4th 9.5267 9.5258 9.5252 9.5261 9.5274 9.5267 9.5274 

 

 

Table 5 
Dimensionless frequencies of beams resting on variable elastic foundation under H-H Boundary conditions ( 100=wK ). 

Theory Mode Constant Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Euler-Bernoulli 1st 4.1528 4.1497 4.0915 3.9212 4.3668 4.4609 4.2869 

2nd 6.4757 6.4763 6.4736 6.4616 6.4878 6.4753 6.4757 

3rd 9.4839 9.4840 9.4835 9.4820 9.4857 9.4843 9.4853 

4th 12.591     12.591    12.591    12.591    12.592    12.592    12.591    

Timoshenko 
hL 15=  

1st 4.1452 4.1420 4.0835 3.9131 4.3595 4.4534 4.2795 

2nd 6.3910 6.3916 6.3888 6.3765 6.4033 6.3905 6.3909 

3rd 9.1998 9.1998 9.1993 9.1977 9.2016 9.2001 9.2012 

4th 11.957     11.957    11.957     11.957     11.958    11.957    11.957    

Timoshenko 
hL 5.7=  

1st 4.1241 4.1204 4.0609 3.8901 4.3390 4.4325 4.2588 

2nd 6.1781 6.1788 6.1758 6.1624 6.1912 6.1773 6.1779 

3rd 8.5838 8.5839 8.5834 8.5815 8.5861 8.5844 8.5856 

4th 10.784    10.784    10.784    10.784     10.785    10.784    10.784    

 

 

Table 6 

Dimensionless frequencies of beams resting on variable elastic foundation under C-C Boundary conditions ( 100=wK ). 

Theory Mode Constant Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Euler-Bernoulli 1st 5.1447 5.1442 5.1095 5.0037 5.2883 5.3641 5.2371 

2nd 7.9545 7.9545 7.9501 7.9364 7.9727 7.9731 7.9613 

3rd 11.033     11.033    11.032    11.029    11.037    11.036    11.035    

4th 14.155      14.155    14.155    14.154    14.156    14.156    14.155    

Timoshenko 
hL 15=  

1st 5.0891 5.0885 5.0528 4.9447 5.2355 5.3122 5.1832 

2nd 7.7074 7.7075 7.7030 7.6888 7.7260 7.7257 7.7141 

3rd 10.447     10.447    10.447    10.444     10.451    10.449    10.449    

4th 13.067     13.067    13.067    13.067    13.068    13.067    13.068    

Timoshenko 
hL 5.7=  

1st 4.9489 4.9480 4.9098 4.7951 5.1032 5.1823 5.0478 

2nd 7.1641 7.1642 7.1594 7.1442 7.1836 7.1811 7.1704 

3rd 9.3532 9.3532 9.3525 9.3504 9.3555 9.3526 9.3541 

4th 11.335     11.335    11.335     11.335    11.335    11.334    11.335    
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Table 7 

Dimensionless frequencies of beams resting on variable elastic foundation under H-C Boundary conditions ( 100=wK ). 

Theory Mode Constant Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Euler-Bernoulli 1st 4.5740 4.5365 4.4738 4.3991 4.7438 4.8222 4.6804 

2nd 7.2061 7.2036 7.1978 7.1877 7.2245 7.2232 7.2127 

3rd 10.257    10.256    10.255    10.254    10.260     10.259    10.258    

4th 13.373    13.373    13.372    13.372    13.374    13.373    13.373   

Timoshenko 
hL 15=  

1st 4.5504 4.5132 4.4501 4.3731 4.7219 4.8009 4.6579 

2nd 7.0517 7.0498 7.0441 7.0328 7.0705 7.0687 7.0583 

3rd 9.8346 9.8345 9.8337 9.8314 9.8377 9.8364 9.8362 

4th 12.525    12.525    12.524    12.524    12.525    12.525    12.525    

Timoshenko 
hL 5.7=  

1st 4.4873 4.4511 4.3867 4.3034 4.6637 4.7442 4.5980 

2nd 6.6885 6.6882 6.6829 6.6682 6.7084 6.7048 6.6948 

3rd 8.9855 8.9862 8.9858 8.9826 8.9881 8.9858 8.9868 

4th 11.071    11.072    11.072    11.071    11.072    11.071    11.071    
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Fig.4 
Six different types of elastic foundation distribution through the length of the beam. 

 

Table 8. is given to study the influence of Winkler foundation distribution on dimensionless critical buckling 

load of Timoshenko beams with different height to length ratios and different boundary conditions. As same as 

behavior observed in free vibration analysis, critical buckling load is affected by Winkler foundation distribution 

and maximum critical buckling load obtained when Winkler foundation distribution is closed to fundamental mode 

shape of beam. 
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Effect of the dimensionless moduli of Winkler foundation on first and second dimensionless frequency (D.F.) of 

Timoshenko beams with C-F and H-C boundary conditions are plotted in Fig. 5 and Fig. 6, respectively. Two types 

of distribution considered for elastic foundation i.e. Case 1 and Case 4 (see Fig. 4). It is clear, by increasing 

dimensionless moduli of Winkler foundation frequency increased in both first and second mode. The type of 

foundation distribution has little influence on second frequency and second frequencies are almost equal for both 

types of distribution and almost change linearly with dimensionless moduli of Winkler foundation, while the first 

frequency greatly affected by the type of foundation distribution (special for C-F) and this issue is more obvious 

when the value of 
wK has been increased. 

In order to deduce effect of distribution type of elastic foundation on first and second normalized mode shapes of 

Timoshenko beam, Fig. 7-10 are presented. Great effect of distribution type on first normalized mode shape is seen 

in Fig. 7 and Fig. 9. 

 
Table 8 

Dimensionless critical buckling load of the Timoshenko beams resting on variable Winkler foundation under different boundary 
conditions ( 100wK = ). 

B.C.  Constant Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

C-F hL 15=  15.4216 17.2984 18.4323 17.5928 11.2936    9.48781 13.3806 

hL 5.7=  14.8072 16.5764 17.6389 16.8106 10.8534    9.11652  12.872    

H-H hL 15=  30.0226 29.7672 27.9746 23.8257 36.7034 39.884   34.0905 

hL 5.7=  29.7033 29.3374 27.475   23.4897 36.3421 38.4248 33.7502 

C-C hL 15=  52.5455 52.5002 51.0558 46.9558 58.6911 62.2904 56.5235 

hL 5.7=  47.7559 47.6833 46.2714 42.3762 53.5525 56.9423 51.5519 

H-C hL 15=  35.5042 33.8322 31.9387 30.9348 39.841   41.4181 38.1682 

hL 5.7=  33.8830 32.1552 30.3115 29.506  37.6986 38.8084 36.2437 

 

 

 

 
First mode 

 
Second mode 

Fig.5 
Effect of the dimensionless moduli of Winkler foundation on dimensionless frequencies of Timoshenko beams with C-F 

boundary conditions. (Dashed line: Case 1; Solid line: Case 4). 

 

 

 
First mode 

 
Second mode 

Fig.6 
Effect of the dimensionless moduli of Winkler foundation on dimensionless frequencies of Timoshenko beams with H-C 

boundary conditions. (Dashed line: Case 1; Solid line: Case 4). 
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Fig.7 
The first normalized mode shape of H-H beams with 

different distribution of elastic foundation. ( 500,10 == wKhL ) 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.8 
The second normalized mode shape of H-H beams with 

different distribution of elastic foundation. ( 500,10 == wKhL ) 

 

  

 

 

 

 

 

Fig.9 
The first normalized mode shape of C-F beams with different 

distribution of elastic foundation. ( 500,10 == wKhL ) 

  

 

 

 

 

 

Fig.10 
The second normalized mode shape of C-F beams with 

different distribution of elastic foundation. ( 500,10 == wKhL ) 
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APPENDIX  
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4    CONCLUSIONS 

In this study, a new finite element formulation has been developed for the buckling and free vibration analysis of 

Timoshenko beams resting on variable Winkler type elastic foundation. A two-node element with sufficiently small 

length and constant shear strain suggested for FE formulation. Small length of element permits us to consider linear 

variation for elastic foundation through the length of the element. The stiffness matrix, mass matrix and geometric 

stiffness matrix of the proposed beam element derived using energy method. Comparison between results obtained 

from presented FE formulation with those obtained from other well-known methods shows very good accuracy. 

Proposed FE formulation applied for the static and dynamic analysis of beams resting on variable Winkler 

foundation and some results presented for the first time. Results shows fundamental frequency and critical buckling 

load are sensitive to foundation distribution through the length of the beam while the higher mode shapes are not. 

Proposed finite element formulation shows faster convergence in comparison with conventional finite element 

formulation and is capable for analyzing the beams resting on variable elastic foundation with any arbitrary 

distribution of elastic foundation. 
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