Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

Document Type: Research Paper


1 Young Researchers and Elite Club, Langarud Branch, Islamic Azad University, Langarud, Guilan, Iran

2 Department of Mechanical Engineering, University of Guilan, Guilan, Iran


The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring elements. The natural frequencies of nanocomposites with different nanotube volume percentages are computed. Besides, the influences of nanotube geometrical parameters on the vibrational characteristics of the nanocomposites are evaluated. It is shown that reinforcing polymer matrix by single-walled silicon carbide nanotubes leads to increasing the natural frequency compared to neat resin. Increasing the length of the nanotubes at the same diameter results in increasing the difference between the frequencies of nanocomposite and pure polymer. Besides, it is observed that clamped-free nanocomposites experience a larger increase in the presence of the nanotubes than clamped-clamped nanotube reinforced polymers.                          


[1] Iijima S., 1991, Helical microtubules of graphitic carbon, Nature 354: 56-58.
[2] Endo M., Hayashi T., Kim Y.A., Terrones M., Dresselhaus M.S., 2004, Applications of carbon nanotubes in the twenty-first century, Philosophical Transactions of the Royal Society A 362: 2223-2238.
[3] Salvetat-Delmotte J.P., Rubio A., 2002, Mechanical properties of carbon nanotubes: a fiber digest for beginners, Carbon 40: 1729-1734.
[4] Fidelus J.D., Wiesel E., Gojny F.H., Schulte K., Wagner H.D., 2005, Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing 36: 1555-1561.
[5] Bonnet P., Sireude D., Garnier B., Chauvet O., 2007, Thermal properties and percolation in carbon nanotube-polymer composites, Applied Physics Letters 91: 2019-2030.
[6] Han Y., Elliott J., 2007, Molecular dynamics simulations of the elastic propertiesof polymer/carbon nanotube composites, Computational Materials Science 39: 315-323.
[7] Ajayan P.M., Schadler L.S., Giannaris C., Rubio A., 2000, Single-walled carbon nanotube-polymer composites: strength and weakness, Advanced Materials 12: 750-753.
[8] Gong X., Liu J., Baskaran S., Voise R.D., Young J.S., 2000, Surfactant-assisted processing of carbon nanotube/polymer composites, Chemistry of Materials 12: 1049-1052.
[9] Haggenmueller R., Gommans H.H., Rinzler A.G., Fischer J.E., Winey K.I., 2000, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chemical Physics Letters 330: 219-225.
[10] Qian D., Dickey E.C., Andrews R., Rantell T., 2000, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters 76: 2868-2870.
[11] Shaffer M.S.P., Windle A.H., 1999, Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites, Advanced Materials 11: 937-941.
[12] Frankland S.J.V., Harik V.M., Odegard G.M., Brenner D.W., Gates T.S., 2003, The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation, Composites Science and Technology 63: 1655-1661.
[13] Zhu R., Pan E., Roy A.K., 2007, Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites, Materials Science and Engineering: A 447: 51-57.
[14] Mokashi V.V., Qian D., Liu Y., 2007, A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics, Composites Science and Technology 67: 530-540.
[15] Tsai J.L., Tzeng S.H., Chiu Y.T., 2010, Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation, Composites Part B: Engineering 41: 106-115.
[16] Yang S., Yu S., Kyoung W., Han D.S., Cho M., 2012, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections, Polymer 53: 623-633.
[17] Yang S., Yu S., Ryu J., Cho J.M., Kyoung W., Han D.S., Cho M., 2013, Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection, International Journal of Plasticity 41: 124-146.
[18] Bohlén M., Bolton K., 2013, Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly(vinylidene fluoride), Computational Materials Science 68: 73-80.
[19] Rouhi S., Alizadeh Y., Ansari R., 2014, Molecular dynamics simulations of the single-walled carbon nanotubes/poly (phenylacetylene) nanocomposites, Superlattices and Microstructures 72: 204-218.
[20] Rouhi S., Alizadeh Y., Ansari R., 2016, On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations, Journal of Molecular Modeling 22: 41.
[21] Rouhi S., Alizadeh Y., Ansari R., Aryayi M., 2015, Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone, Modern Physics Letters B 29: 1550155.
[22] Li C., Chou T.W., 2006, Multiscale modeling of compressive behavior of carbon nanotube/polymer composites, Composites Science and Technology 66: 2409-2414.
[23] Georgantzinos S.K., Giannopoulos G.I., Anifantis N.K., 2009, Investigation of stress-strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method, Theoretical and Applied Fracture Mechanics 52: 158-164.
[24] Giannopoulos G.I., Georgantzinos S.K., Anifantis N.K., 2010, A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites, CompositesPart B: Engineering 41: 594-601.
[25] Shokrieh M.M., Rafiee R., 2010, On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region, Composite Structures 92: 647-652.
[26] Shokrieh M.M., Rafiee R., 2010, Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites, Composite Structures 92: 2415-2420.
[27] Wernik J.M., Meguid S.A., 2009, Coupling atomistics and continuum in solids: status, prospects, and challenges, International Journal of Mechanics and Materials in Design 5: 79-110.
[28] Wernik J.M., Meguid S.A., 2011, Multiscale modeling of the nonlinear response of nano-reinforced polymers, Acta Mechanica 217: 1-16.
[29] Meguid S.A., Wernik J.M., Cheng Z.Q., 2010, Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies, International Journal of Solids and Structures 47: 1723-1736.
[30] Pan H., Si X., 2009, Molecular dynamics simulations of diameter dependence tensile behavior of silicon carbide nanotubes, Physica B: Condensed Matter 404: 1809-1812.
[31] Zhang A., Gu X., Liu F., Xie Y., Ye X., Shi W., 2012, A study of the size-dependent elastic properties of silicon carbide nanotubes: First-principles calculations, Physics Letters A 376: 1631-1635.
[32] Ansari R., Rouhi S., Aryayi M., Mirnezhad M., 2012, On the buckling behavior of single-walled silicon carbide nanotubes, Scientia Iranica 19: 1984-1990.
[33] Ansari R., Rouhi S., 2016, Vibrational analysis of single-layered silicon carbide nanosheets and single-walled silicon carbide nanotubes using nanoscale finite element method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
[34] Ansari R., Rouhi S., Mirnezhad M., Aryayi M., 2013, Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression, Physica E: Low-dimensional Systems and Nanostructures 53: 22-28.