[1] Koizumi M., 1993, The concept of FGM, Ceramic Transaction: Functionally Graded Material 34: 3-10.
[2] Koizumi M., 1997, FGM activities in Japan, Composites Part B 28: 1-4.
[3] Muller E., Drasar C., Schilz J., Kaysser W. A., 2003, Functionally graded materials for sensor and energy applications, Materials Science and Engineering A 362: 17-39.
[4] Pompe W., Worch H., Epple M., Friess W., Gelinsky M., Greil P., Hempele U., Scharnweber D., Schulte K., 2003, Functionally graded materials for biomedical applications, Material Science and Engineering: A 362: 40-60.
[5] Schulz U., Peters M., Bach F. W., Tegeder G., 2003, Graded coatings for thermal, wear and corrosion barriers, Material Science and Engineering: A 362: 61-80.
[6] Sankar B. V., 2001, An elasticity solution for functionally graded beams, Composites Science and Technology 61(5): 689-696.
[7] Zhong Z., Yu T., 2007, Analytical solution of a cantilever functionally graded beam, Composites Science and Technology 67: 481-488.
[8] Daouadji T. H., Henni A. H., Tounsi A., Bedia E. A. A., 2013, Elasticity solution of a cantilever functionally graded beam, Applied Composite Material 20: 1-15.
[9] Ding J. H., Huang D. J., Chen W. Q., 2007, Elasticity solutions for plane anisotropic functionally graded beams, International Journal of Solids and Structures 44(1): 176-196.
[10] Huang D. J., Ding J. H., Chen W. Q., 2009, Analytical solution and semi-analytical solution for anisotropic functionally graded beam subject to arbitrary loading, Science in China Series G 52(8): 1244-1256.
[11] Ying J., Lu C. F., Chen W. Q., 2008, Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations, Composite Structures 84: 209-219.
[12] Chu P., Li X. F., Wu J. X., Lee K. Y., 2015, Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending, Acta Mechanica 226: 2235-2253.
[13] Xu Y., Yu T., Zhou D., 2014, Two-dimensional elasticity solution for bending of functionally graded beams with variable thickness, Meccanica 49: 2479-2489.
[14] Bernoulli J., 1694, Curvatura Laminae Elasticae, Acta Eruditorum Lipsiae.
[15] Timoshenko S. P., 1921, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine 41(6): 742-746.
[16] Reddy J. N., 1984, A simple higher order theory for laminated composite plates, ASME Journal of Applied Mechanics 51: 745-752.
[17] Sayyad A. S., Ghugal Y. M., 2015, On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results, Composite Structures 129: 177-201.
[18] Sayyad A. S., Ghugal Y. M., 2017, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Composite Structures 171: 486-504.
[19] Sayyad A. S., Ghugal Y. M., 2018, Modeling and analysis of functionally graded sandwich beams: A review, Mechanics of Advanced Materials and Structures 0(0): 1-20.
[20] Nguyen T. K., Vo T. P., Nguyen B. D., Lee J., 2016, An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory, Composite Structures 156: 238-252.
[21] Nguyen T. K., Nguyen T. P., Vo T. P., Thai H. T., 2015, Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory, Composites Part B 76: 273-285.
[22] Nguyen T. K., Nguyen B. D., 2015, A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams, Journal of Sandwich Structures and Materials 17: 1-19.
[23] Thai H. T., Vo T. P., 2012, Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories, International Journal of Mechanical Sciences 62(1): 57-66.
[24] Osofero A. I., Vo T. P., Thai H. T., 2014, Bending behaviour of functionally graded sandwich beams using a quasi-3D hyperbolic shear deformation theory, Journal of Engineering Research 19(1): 1-16.
[25] Osofero A. I., Vo T. P., Nguyen T. K., Lee J., 2016, Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories, Journal of Sandwich Structures and Materials 18(1): 3-29.
[26] Bennai R., Atmane H. A., Tounsi A., 2015, A new higher-order shear and normal deformation theory for functionally graded sandwich beams, Steel and Composite Structures 19(3): 521-546.
[27] Bouakkaz K., Hadji L., Zouatnia N., Bedia E. A., 2016, An analytical method for free vibration analysis of functionally graded sandwich beams, Wind and Structures 23(1): 59-73.
[28] Giunta G., Crisafulli D., Belouettar S., Carrera E., 2011, Hierarchical theories for the free vibration analysis of functionally graded beams, Composite Structures 94: 68-74.
[29] Giunta G., Crisafulli D., Belouettar S., Carrera E., 2013, A thermomechanical analysis of functionally graded beams via hierarchical modelling, Composite Structures 95: 676-690.
[30] Vo T. P., Thai H. T., Nguyen T. K., Inam F., Lee J., 2015, Static behaviour of functionally graded sandwich beams using a quasi-3D theory, Composites Part B 68: 59-74.
[31] Vo T. P., Thai H. T., Nguyen T. K., Inam F., Lee J., 2015, A quasi-3D theory for vibration and buckling of functionally graded sandwich beams, Composite Structures 119: 1-12.
[32] Vo T. P., Thai H. T., Nguyen T. K., Maheri A., Lee J., 2014, Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory, Engineering Structures 64: 12- 22.
[33] Yarasca J., Mantari J. L., Arciniega R. A., 2016, Hermite–Lagrangian finite element formulation to study functionally graded sandwich beams, Composite Structures 140: 567-581.
[34] Amirani M. C., Khalili S. M. R., Nemati N., 2009, Free vibration analysis of sandwich beam with FG core using the element free Galerkin method, Composite Structures 90: 373-379.
[35] Tossapanon P., Wattanasakulpong N., 2016, Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation, Composite Structures 142: 215-225.
[36] Karamanli A., 2017, Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3D shear deformation theory, Composite Structures 174: 70-86.
[37] Mashat D. S., Carrera E., Zenkour A. M., Al Khateeb S. A., Filippi M., 2014, Free vibration of FGM layered beams by various theories and finite elements, Composites Part B 59: 269-278.
[38] Trinh L. C., Vo T. P., Osofero A. I., Lee J., 2016, Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach, Composite Structures 156: 263-275.
[39] Wattanasakulpong N., Prusty B. G., Kelly D. W., Hoffman M., 2012, Free vibration analysis of layered functionally graded beams with experimental validation, Materials and Design 36: 182-190.
[40] Yang Y., Lam C. C., Kou K. P., Iu V. P., 2014, Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method, Composite Structures 117: 32-39.
[41] Sayyad A. S., Ghugal Y. M., 2017, A unified shear deformation theory for the bending of isotropic, functionally graded, laminated and sandwich beams and plates, International Journal of Applied Mechanics 9: 1-36.
[42] Sayyad A. S., Ghugal Y. M., 2018, Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams, Asian Journal of Civil Engineering 19(5): 607-623.
[43] Alipour M. M., Shariyat M., 2013, Analytical zigzag-elasticity transient and forced dynamic stress and displacement response prediction of the annular FGM sandwich plates, Composite Structures 106: 426-445.
[44] Alipour M. M., Shariyat M., 2014, An analytical global–local Taylor transformation-based vibration solution for annular FGM sandwich plates supported by nonuniform elastic foundations, Archives of Civil and Mechanical Engineering 14(1): 6-24.
[45] Alipour M. M., Shariyat M., 2014, Analytical stress analysis of annular FGM sandwich plates with non-uniform shear and normal tractions, employing a zigzag-elasticity plate theory, Aerospace Science and Technology 32(1): 235-259.
[46] Shariyat M., Hosseini S. H., 2015, Accurate eccentric impact analysis of the preloaded SMA composite plates, based on a novel mixed-order hyperbolic global–local theory, Composite Structures 124: 140-151.
[47] Shariyat M., Mozaffari A., Pachenari M. H., 2017, Damping sources interactions in impact of viscoelastic composite plates with damping treated SMA wires, using a hyperbolic plate theory, Applied Mathematical Modelling 43: 421-440.
[48] Soldatos K. P., 1992, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mechanica 94: 195-200.
[49] Wakashima K., Hirano T., Niino M., 1990, Space applications of advanced structural materials, Proceedings of an International Symposium (ESA SP).