Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions

Document Type: Research Paper


School of Mechanics Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran



The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent couple stress theory proposed by Hadjesfandiari and Dargush together with Gurtin-Murdoch elasticity theory. The governing differential equation of motion is derived using Hamilton’s principle and discretized to a set of nonlinear ODE through Galerkin’s method. Nonlinearities stemmed from different sources such as mid-plane stretching, electrostatic and interatomic forces lead to an intensive nonlinear dynamics in nano-electro-mechanical devices so that the systems exhibit rich dynamic behavior such as periodic and chaotic motions. Poincaré portrait is utilized in order to present the system dynamic response in discrete state-space. Bifurcation analysis has been performed with a change in the magnitude of AC voltage corresponding to the various values of DC voltage and excitation frequency. Then, we compare some ranges of AC voltage amplitude, in which the system response becomes stable for these cases. Fast Fourier transformation is also carried out to analyze the frequency content of the system response.


Main Subjects

[1] Mayoof F. N., Hawwa M. A., 2009, Chaotic behavior of a curved carbon nanotube under harmonic excitation, Chaos, Solitons & Fractals 42(3):1860-1867.
[2] Amorim T. D., Dantas W. G., Gusso A., 2015, Analysis of the chaotic regime of MEMS/NEMS fixed–fixed beam resonators using an improved 1DOF model, Nonlinear Dynamics 79(2): 967-981.
[3] Sabarathinam S., Thamilmaran K., 2016, Implementation of analog circuit and study of chaotic dynamics in a generalized Duffing-type MEMS resonator, Nonlinear Dynamics 2016:1-12.
[4] Hu W., Song M., Deng Z., Zou H., Wei B., 2017, Chaotic region of elastically restrained single-walled carbon nanotube, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(2): 023118.
[5] Bienstman J., Vandewalle J., Puers R., 1998, The autonomous impact resonator: a new operating principle for a silicon resonant strain gauge, Sensors and Actuators A: Physical 66(1): 40-49.
[6] Luo A. C., Wang F.-Y., 2002, Chaotic motion in a micro-electro–mechanical system with non-linearity from capacitors, Communications in Nonlinear Science and Numerical Simulation 7(1): 31-49.
[7] Luo A. C., Wang F.-Y., 2004, Nonlinear dynamics of a micro-electro-mechanical system with time-varying capacitors, Journal of Vibration and Acoustics 126(1): 77-83.
[8] DeMartini B. E., Butterfield H. E., Moehlis J., Turner K. L., 2007, Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation, Journal of Microelectromechanical Systems 16(6): 1314-1323.
[9] Wang Y. C., Adams S. G., Thorp J. S., MacDonald N. C., Hartwell P., Bertsch F., 1998, Chaos in MEMS, parameter estimation and its potential application, IEEE Transactions on Circuits and Systems, Fundamental Theory and Applications 45(10): 1013-1020.
[10] Zhang W.-M., Tabata O., Tsuchiya T., Meng G., 2011, Noise-induced chaos in the electrostatically actuated MEMS resonators, Physics Letters A 375(32): 2903-2910.
[11] Aghababa M. P., 2012, Chaos in a fractional-order micro-electro-mechanical resonator and its suppression, Chinese Physics B 21(10): 100505.
[12] Li H., Liao X., Ullah S., Xiao L., 2012, Analytical proof on the existence of chaos in a generalized Duffing-type oscillator with fractional-order deflection, Nonlinear Analysis: Real World Applications 13(6): 2724-2733.
[13] Miandoab E. M., Yousefi-Koma A., Pishkenari H. N., Tajaddodianfar F., 2015, Study of nonlinear dynamics and chaos in MEMS/NEMS resonators, Communications in Nonlinear Science and Numerical Simulation 22(1): 611-622.
[14] Seleim A., Towfighian S., Delande E., Abdel-Rahman E., Heppler G., 2012, Dynamics of a close-loop controlled MEMS resonator, Nonlinear Dynamics 69(1-2): 615-633.
[15] Han J., Zhang Q., Wang W., 2015, Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes, Communications in Nonlinear Science and Numerical Simulation 22(1): 492-510.
[16] Haghighi H. S., Markazi A. H., 2010, Chaos prediction and control in MEMS resonators, Communications in Nonlinear Science and Numerical Simulation 15(10): 3091-3099.
[17] Yau H.-T., Wang C.-C., Hsieh C.-T., Cho C.-C., 2011, Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design, Computers & Mathematics with Applications 61(8): 1912-1916.
[18] Zhankui S., Sun K., 2013, Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation 18(9): 2540-2548.
[19] Tusset A., Balthazar J. M., Bassinello D., Pontes Jr B., Felix J. L. P., 2012, Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator, Nonlinear Dynamics 69(4): 1837-1857.
[20] Tusset A. M., Bueno A. M., Nascimento C. B., dos Santos Kaster M., Balthazar J. M., 2013, Nonlinear state estimation and control for chaos suppression in MEMS resonator, Shock and Vibration 20(4): 749-761.
[21] Tajaddodianfar F., Hairi Yazdi M. R., Pishkenari H. N., 2015, On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study, International Journal of Bifurcation and Chaos 25(08): 1550106.
[22] Ni X., Ying L., Lai Y.-C., Do Y., Grebogi C., 2013, Complex dynamics in nanosystems, Physical Review E 87(5): 052911.
[23] Hu W., Deng Z., Wang B., Ouyang H., 2013, Chaos in an embedded single-walled carbon nanotube, Nonlinear Dynamics 72(1-2): 389-398.
[24] Coluci V., Legoas S., de Aguiar M., Galvao D., 2005, Chaotic signature in the motion of coupled carbon nanotube oscillators, Nanotechnology 16(4): 583.
[25] Hawwa M., Mayoof F., 2009, Nonlinear oscillations of a carbon nanotube resonator, International Symposium on Mechatronics and its Applications, Sharjah.
[26] Hawwa M. A., Al-Qahtani H. M., 2010, Nonlinear oscillations of a double-walled carbon nanotube, Computational Materials Science 48(1): 140-143.
[27] Joshi A. Y., Sharma S. C., Harsha S., 2012, Chaotic response analysis of single-walled carbon nanotube due to surface deviations, Nanotechnology 7(02): 1250008.
[28] Ashhab M., Salapaka M., Dahleh M., Mezić I., 1999, Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy, Nonlinear Dynamics 20(3): 197-220.
[29] Ashhab M., Salapaka M. V., Dahleh M., Mezić I., 1999, Dynamical analysis and control of microcantilevers, Automatica 35(10): 1663-1670.
[30] Basso M., Giarre L., Dahleh M., Mezic I., 1998, Numerical analysis of complex dynamics in atomic force microscopes, Proceedings of the 1998 IEEE International Conference 2: 1026-1030.
[31] Balthazar J. M., Tusset A. M. Bueno A., 2014, TM-AFM nonlinear motion control with robustness analysis to parametric errors in the control signal determination, Journal of Theoretical and Applied Mechanics 52: 93-106.
[32] Jamitzky F., Stark M., Bunk W., Heckl W., Stark R., 2006, Chaos in dynamic atomic force microscopy, Nanotechnology 17(7): S213.
[33] Raman A., Hu S., 2006, Chaos in dynamic atomic force microscopy, International Symposium on Nonlinear Theory and Its Applications, Bologna, Italy.
[34] Lin W.-H., Zhao Y.-P., 2005, Nonlinear behavior for nanoscale electrostatic actuators with Casimir force, Chaos, Solitons & Fractals 23(5): 1777-1785.
[35] Abdel-Rahman E. M., Nayfeh A. H., 2003, Secondary resonances of electrically actuated resonant microsensors, Journal of Micromechanics and Microengineering 13(3): 491.
[36] Ouakad H. M., Younis M. I., 2010, Nonlinear dynamics of electrically actuated carbon nanotube resonators, Journal of Computational and Nonlinear Dynamics 5(1): 011009.
[37] Nayfeh A. H., Balachandran B., 1995, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, Wiley Series in Nonlinear Sciences, John Wiley & Sons, Inc New York.
[38] Younis M. I., 2011, MEMS Linear and Nonlinear Statics and Dynamics, Springer Science & Business Media.
[39] Kivi A. R., Azizi S., Norouzi P., 2017, Bifurcation analysis of an electrostatically actuated nano-beam based on modified couple stress theory, Sensing and Imaging 18(1): 32.
[40] Chen X., Meguid S., 2017, Dynamic behavior of micro-resonator under alternating current voltage, International Journal of Mechanics and Materials in Design 13: 481-497.
[41] Nikpourian A., Ghazavi M. R., Azizi S., 2018, On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories, International Journal of Mechanics and Materials in Design 14: 1-19.
[42] Pourkiaee S. M., Khadem S. E., Shahgholi M., 2016, Parametric resonances of an electrically actuated piezoelectric nanobeam resonator considering surface effects and intermolecular interactions, Nonlinear Dynamics 84: 1943-1960.
[43] Hajnayeb A., Khadem S., 2011, Nonlinear vibrations of a carbon nanotube resonator under electrical and van der Waals forces, Journal of Computational and Theoretical Nanoscience 8(8): 1527-1534.
[44] Hajnayeb A., Khadem S., 2012, Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation, Journal of Sound and Vibration 331(10): 2443-2456.
[45] Batra R. C., Porfiri M., Spinello D., 2008, Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates, Sensors 8(2): 1048-1069.
[46] Lamoreaux S. K., 2004, The Casimir force: background, experiments, and applications, Reports on Progress in Physics 68(1): 201.
[47] Gupta R. K., 1998, Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS, Thesis Ph. D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.
[48] Huang J.-M., Liew K., Wong C., Rajendran S., Tan M., Liu A., 2001, Mechanical design and optimization of capacitive micromachined switch, Sensors and Actuators A: Physical 93(3): 273-285.
[49] Mindlin R., Tiersten H., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis 11(1): 415-448.
[50] Stölken J., Evans A., 1998, A microbend test method for measuring the plasticity length scale, Acta Materialia 46(14): 5109-5115.
[51] Hadjesfandiari A. R., Dargush G. F., 2011, Couple stress theory for solids, International Journal of Solids and Structures 48(18): 2496-2510.
[52] Osterberg P. M., Senturia S. D., 1997, M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures, Journal of Microelectromechanical Systems 6(2): 107-118.
[53] Gurtin M. E., Murdoch A. I., 1975, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis 57(4): 291-323.
[54] Gurtin M. E., Murdoch A. I., 1978, Surface stress in solids, International Journal of Solids and Structures 14(6): 431-440.
[55] Ru C., 2010, Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions, Science China Physics, Mechanics and Astronomy 53(3): 536-544.
[56] Azizi S., Ghazavi M.-R., Khadem S. E., Rezazadeh G., Cetinkaya C., 2013, Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam, Nonlinear Dynamics 73(1-2): 853-867.
[57] Zhu R., Pan E., Chung P. W., Cai X., Liew K. M., Buldum A., 2006, Atomistic calculation of elastic moduli in strained silicon, Semiconductor Science and Technology 21(7): 906.
[58] Akgöz B., Civalek Ö., 2011, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science 49(11): 1268-1280.
[59] Alemansour H., Miandoab E. M., Pishkenari H. N., 2017, Effect of size on the chaotic behavior of nano resonators, Communications in Nonlinear Science and Numerical Simulation 44: 495-505.
[60] Chen Y., 1993, Bifurcation and Chaos Theory of Nonlinear Vibration Systems, Higher Education, Beijing, China.
[61] Guckenheimer J., Holmes P. J., 2013, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Science & Business Media.