[1]Nowacki W.,1958, Thermoelasticity, Addison-Wesley, London.
[2] Nowinski J.,1978, Theory of Thermoelasticity with Applications, Setoff and Noord-Hoff, International Publishers, Alphenaan den Rijn.
[3] Biot M.,1956, Thermoelasticity and irreversible thermo-dynamics, Journal of Applied Physics 27: 240-253.
[4] Lord H., Shulman Y., 1967, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids 15: 299-309.
[5] Dhaliwal R., Sherief H. H., 1980, Generalized thermoelasticity for an isotropic Media, Quarterly of Applied Mathematics 33: 1-8.
[6] Sherief H. H., Dhaliwal R., 1981, Generalized one-dimensional hermal-shock problem for small times, Journal of Thermal Stresses 4: 407.
[7] Othman M. I. A., 2002, Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized Thermoelasticity, Journal of Thermal Stresses 25: 1027-1045.
[8] Müller I., 1971, The Coldness, A universal function in thermo-elastic solids, Archive for Rational Mechanics and Analysis 41: 319.
[9] Green A. E., Laws N., 1972, On the entropy production inequality, Archive for Rational Mechanics and Analysis 45: 45-47.
[10] Lord H. W., Şhulman Y., 1967, A generalized dynamical theory of thennoelasticity, Journal of the Mechanics and Physics of Solids 15: 299-306.
[11] Green A. E., Lindsay K. A., 1972, Thermoelasticity, Journal of Elasticity 2: 1-7.
[12] Şuhubi E. S., 1975, Themoelastic Solids in Continuum Physics II, Academic, Press, New York.
[13] Ignaczak J., 1985, A strong discontinuity wave in thermoelasticity with relaxation times, Journal of Thermal Stresses 8: 25-40.
[14] Ignaczak J., 1978, Decomposition theorem for thermoelasticity with finite wave speeds, Journal of Thermal Stresses 1: 41.
[15] Dhaliwal R., 1989, Thermal shock problem in generalized thermoelastic, Journal of Thermal Stresses 12: 259-278.
[16] Lotfy Kh., Hassan W., 2014, Normal mode method for two-temperature generalized thermoelasticity under thermal shock problem, Journal of Thermal Stresses 37(5): 545-560.
[17] Othman M. I. A., Lotfy Kh., Farouk R. M., 2009, Transient disturbance in a half-space under generalized magneto-thermoelasticity due to moving internal heat source, Acta Physica Polonica A 116: 186-192.
[18] Lotfy Kh., 2017, A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity, Chaos, Solitons and Fractals 99: 233-242,
[19] Lotfy Kh., Gabr M.E., 2017, Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses, Optics and Laser Technology 97: 198-208.
[20] Dhaliwal R., 1980, External Crack due to Thermal Effects in an Infinite Elastic Solid with a Cylindrical Inclusion, Thermal Stresses in Server Environments Plenum Press, New York and London.
[21] Hasanyan D., Librescu L., Qin Z., Young R., 2005, Thermoelastic cracked plates carrying nonstationary electrical current, Journal of Thermal Stresses 28: 729-745.
[22] Ueda S., 2003, Thermally induced fracture of a piezoelectric laminate with a crack normal to interfaces, Journal of Thermal Stresses 26: 311-323.
[23] Elfalaky A., Abdel-Halim A. A., 2006, A mode-I crack problem for an infinite space in thermoelasticity, Journal of Applied Sciences 6: 598-606.
[24] Abouelregal A. S., Abo-Dahab S. M., 2018, A two-dimensional problem of a mode I crack in a rotating fibre-reinforced isotropic thermoelastic medium under Dual Phase Lags model, Sadhana 43(1): 1-11.
[25] Lotfy Kh., Abo-Dahab S. M., Hobiny A. D., 2018, Plane waves on a gravitational rotating fibre-reinforced rhermoelastic medium with thermal shock problem, Journal of Advanced Physics 7: 58-69.
[26] El-Naggar A. M., Kishka Z., Abd-Alla A. M., Abbas I. A., Abo-Dahab S. M., Elsagheer M., 2018, On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity, Journal of Computational and Theoretical Nanoscience 10(6): 1408-1417.