Temperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, University of Guilan, Rasht, Iran

2 Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

10.22034/jsm.2019.668662

Abstract

Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness in small-scale, so, due to some limitation of considering all peripheral parameters; particular simulations of temperature effect on the atomic scale are considerable. The present paper provides a molecular dynamics approach for modeling the Nano-Indentation mechanism with three types of pyramids, cubic and spherical indenters at different temperatures of 173, 273, 300 and 373K. Based on load-indentation depth diagrams and Oliver-Far equations, the findings of the study indicate that results in the weakening bond among the bilateral atoms lead to reduced corresponding harnesses. Whenever, the temperature increases the elastic modulus decrease as well as the related hardness. Moreover, within determining the elastic modulus and hardness, the results obtained from the spherical indenter will have the better consistency with experimental data. This study can be regarded as a novel benchmark study for further researches which tend to consider structural responses of the various Bio-inspired Nano-Composites.

Keywords

Main Subjects

[1] Goodarzi M., Mohammadi M., Farajpour A., Khooran M., 2014, Investigation of the effect of pre-stressed on vibration frequency of rectangular Nanoplate based on a visco-Pasternak foundation, Journal of Solid Mechanics 6(1): 98-121.
[2] Tavaf V., Bahrami M.N., Goodarzi M., 2017, Refined plate theory for free vibration analysis of FG Nanoplates using the nonlocal continuum plate model, Journal of Computational Applied Mechanics 48(1): 123-136.
[3] Goodarzi M., Mohammadi M., Khooran M., Saadi F., 2016, Thermo-mechanical vibration analysis of FG circular and annular Nanoplate based on the visco-pasternak foundation, Journal of Solid Mechanics 8(4): 788-805.
[4] Arda M., Aydogdu M., 2018, Longitudinal magnetic field effect on torsional vibration of carbon nanotubes, Journal of Computational Applied Mechanics 49(2): 304-313.
[5] Safarabadi M., Mohammadi M., Farajpour A., Goodarzi M., 2013, Effect of surface energy on the vibration analysis of rotating nanobeam, Journal of Solid Mechanics 7(3): 299-311.
[6] Moradi A., Ghanbarzadeh A., Jalalvand M.,Yaghootian A., 2018, Magneto-thermo mechanical vibration analysis of FG nanoplate embedded on visco pasternak foundation, Journal of Computational Applied Mechanics 49(2): 395-407.
[7] Daneshmehr A., Zargaripoor A., Rajabpoor A., Isaac-Hosseini I., 2018, Free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory using finite element method,Journal of Computational Applied Mechanics 49(1): 86-101.
[8] Kordani N., Farajpour A., Divsalar M., Fereidoon A., 2016, Forced vibration of piezoelectric Nanowires based on nonlocal elasticity theory, Journal of Computational Applied Mechanics 47(2): 137-150.
[9] Ghorbanpour Arani A., Haghparast E., Baba Akbar Zarei H., 2016, Application of halpin-tsai method in modelling and size-dependent vibration analysis of CNTs/fiber/polymer composite microplates, Journal of Computational Applied Mechanics 47(1): 45-52.
[10] Ghorbanpour Arani A., Amir S., Karamali Ravandia A., 2015, Nonlinear flow-induced flutter instability of double CNTs using reddy beam theory, Journal of Computational Applied Mechanics 46(1): 1-12.
[11] Ghorbanpour Arani A., Fereidoon A.,Kolahchi R., 2014, Nonlocal DQM for a nonlinear buckling analysis of DLGSs integrated with Zno piezoelectric layers, Journal of Computational Applied Mechanics 45(1): 9-22.
[12] UzunB., Numanoglu H., Civalek O., 2018, Free vibration analysis of BNNT with different cross-sections via nonlocal FEM, Journal of Computational Applied Mechanics 49(2): 252-260.
[13] Hosseini M., Hadi A., Malekshahi A., Shishesaz M., 2018, A review of size-dependent elasticity for nanostructures, Journal of Computational Applied Mechanics 49(1): 197-211.
[14] Asemi S.R., Mohammadi M., Farajpour A., 2014, A study on the nonlinear stability of orthotropic single-layered graphene sheet based on nonlocal elasticity theory, Latin American Journal of Solids and Structures 11(9): 1515-1540.
[15] Mohammadi M., Farajpour A., Goodarzi M., Mohammadi H., 2013, Temperature effect on vibration analysis of annular graphene sheet embedded on visco-Pasternak foundation, Journal of Solid Mechanics 5(3): 305-323.
[16] Jin Me S., Wan Lin G., 2010, Chmical- mechanical stablity of the hierarchical structure of mshell nacre, Science China Physics, Mechanics and Astronomy 53(2): 380-388.
[17] Lv J., Jiang Y., Zhang D., 2015, Structural and mechanical characterization of atrina pectinata and freshwater mussel shells, Journal of Bionic Engineering 12(2): 276-284.
[18] Addadi L., Joester D., Nudelman F., Weiner S., 2006, Mollusk shell formation: A source of new concepts for understanding biomineralization processes, Chemistry 12(4): 980-987.
[19] Sarikaya M., Gunnison K.E., Yasrebi M., Aksay I.A., 1990, Mechanical property–microstructural relationship in abalone shell, Symposium R – Materials Synthesis Utilizing Biological Processes 174: 325-452.
[20] DeVol R.T., Sun C.Y., Marcus M.A., Coppersmith S.N., Myneni S.C., Gilbert P.U., 2015, Nanoscale transforming mineral phases in fresh nacre, Journal of the American Chemical Society 137(41): 13325-13333.
[21] Horacio D.E., Jee E.R., Barthelat F., Markus J.B., 2009, Merger of structure and material in nacre and bone - perspective on de novo biomimetic material, Progress in Materials Science 54: 1059-1100.
[22] Zhi‐Hui X., Xiaodong Li, 2011, Deformation strengthening of biopolymer in nacre, Advanced Functional Materials 21(20): 3883-3888.
[23] Horacio D., Jee E.R., Barthelat F., Buehler M. J., 2009, Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials, Progress in Materials Science 54(8): 1059-1100.
[24] Bruet B.J.F., Qi H.J., Boyce M.C., Panas R., Tai K., Frick L., Ortiz C., 2005, Nanoscale morphology and indentation of individual nacre tablets from the gatropod mollusc trochus niloticus, Journal of Materials Research 20(9): 2400-2419.
[25] Meguid S. A., Alian A. R., 2018, Micromechanics and Nanomechanics of Composite Solids, Springer.
[26] Barthelat F., Horacio D., Jee E.R., 2003, Elastic properties of nacre aragonite tablets, Journal of Applied Mechanics 68: 2-7.
[27] Furuhashi T., Schwarzinger C., Miksik I., Smrz M., Beran A., 2009, Molluscan shell evolution with review of shell calcification hypothesis, Comparative Biochemistry and Physiology Part B 154(3): 351-371.
[28] Rodrigues J. R., Alves N. M., Mano J. F., 2017, Nacre-inspired Nano-Composites produced using layer-by-layer assembly: Design strategies and biomedical applications, Materials Science and Engineering C 76: 1263-1273.
[29] Weiss I. M., Tuross N., Addadi L., Weiner S., 2002, Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite, Journal of Experimental Zoology 293(5): 478-491.
[30] Finnemore A., Cunha P., Shean T., Vignolini S., Guldin S., Oyen M., Steiner U., 2012, Biomimetic layer-by-layer assembly of artificial nacre, Nature Communications 3: 966.
[31] Li X., Chang W.-C., Chao Y. J., Wang R., Chang M., 2004, Nanoscale structural and mechanical characterization of a natural Nano-Composite material: the shell of red abalone, Nano Letters 4(4): 613-617.
[32] Lee Y. H., Islam S.M., Hong S.J., Cho K.M., Math R.K., Heo J.Y., Kim H., Yun H.D., 2010, Composted oyster shell as lime fertilizer is more effective than fresh oyster shell, Biosci Biotechnol Biochem 74(8): 1517-1521.
[33] Kunitake M.E., Mangano L.M., Peloquin J.M., Baker S.P., Estroff L.A., 2013, Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells, Acta Biomater 9(2): 5353-5359.
[34] Cowin S. C., Hegedus D.H., 1976, Bone remodeling II: theory of adaptive elasticity, Journal of Elasticity 6(3): 313-326.
[35] Sumitomo T., Kakisawa H., Owaki Y., Kagawa Y., 2007, Structure of natural nano-laminar composites: TEM observation of nacre, Materials Science Forum 561-565: 713-716.
[36] Zhang N., Yang S., Xiong L., Hong Y., Chen Y., 2016, Nanoscale toughening mechanism of nacre tablet, Journal of the Mechanical Behavior of Biomedical Materials 53: 200-209.
[37] Lee S. W., Kim Y. M., Kim R. H., Choi C. S., 2008, Nano-structured biogenic calcite: A thermal and chemical approach to folia in oyster shell, Micron 39(4): 380-386.
[38] Patodia S., Bagaria A., Chopra D., 2014, Molecular dynamics simulation of proteins: A brief overview, Journal of Physical Chemistry & Biophysics 4(6): 166-175.
[39] Kizler P., Schmauder S., 2007, Simulation of the nanoin- dentation of hard metal carbide layer systems—the case of nanostructured ultra-hard carbide layer sys- tems, Computational Materials Science 39: 205-213.
[40] Peng P., Liao G., Shi T., Tang Z., Gao Y., 2010, Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate, Applied Surface Science 256(21): 6284-6290.
[41] Ciccotti G., 2009, Molecular dynamics simulation, Journal of Micro/Nanolithography, MEMS, and MOEMS 8(2): 21151-21158.
[42] Rocha J. R., Yang K. Z., Hilbig T., Brostow W., Simoes R., 2013, Polymer indentation with mesoscopic molecular dynamics, Journal of Materials Research 28(21): 3043-3052.
[43] Fang T. H., Wu J. H., 2008, Molecular dynamics simulations on Nanoindentation mechanisms of multilayered films, Computational Materials Science 43(4): 785-790.
[44] Peng C., Zeng F., 2017, A molecular simulation study to the deformation Behaviors and the size effect of polyethylene during Nanoindentation, Computational Materials Science 137: 225-232.
[45] Yu Z., Lau D., 2015, Molecular dynamics study on stiffness and ductility in chitin–protein composite, Journal of Materials Science 50(21):7149-7157.
[46] Jin K., Feng X., Xu Z., 2013, Mechanical properties of chitin-protein interfaces: A molecular dynamics study, BioNanoscience 3(3): 312-320.
[47] Pharr G.M., Oliver W.C., Brotzen F.R., 1999, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, Journal of Materials Research 7: 613-617.
[48] Oliver W.C., Pharr G.M., 1992, An improved technique for determination hardness and elastic modulus using load and displacment sensing indentation exprimental, Journal of Materials Research 7: 1564-1583.
[49] Ning Zhang Y.C., 2013, Nanoscale plastic deformation mechanism in single crystal aragonite, Journal of Materials Science 48: 785-796.
[50] Terrell E.J., Landry E., Mcgaughey A., Iii C.F.H., 2017, Molecular Dynamics Simulation of Nano Indentation.
[51] Goel S., Haque Faisal N., Luo X., Yan J., Agrawal A., 2014, Nanoindentation of polysilicon and single crystal silicon: Molecular dynamics simulation and experimental validation, Journal of Physics D: Applied Physics 47(27): 275304.
[52] Niihara K., 1979, Slip system and olastic deformation of silicon carbid single crystal at hightemperatures, Journal of the Less Common Metals 65: 155-166.
[53] Wang H., Hu M., Xia M., Ke F., Bai Y., 2008, Molecular/cluster statistical thermodynamics methods to simulate quasi-static deformations at finite temperature, International Journal of Solids and Structures 45(13): 3918-3933.
[54] Amaya-Roncancio S., Arias-Mateus D.F., Gómez-Hermida M.M., Riaño-Rojas J.C., Restrepo-Parra E., 2012, Molecular dynamics simulations of the temperature effect in the hardness on Cr and CrN films, Applied Surface Science 258(10): 473-4477.
[55] Zaremba C. M., 1996, Critical transitions in the biofabrication of abalone shells and flat pearls, Chemistry of Materials 8(3): 679-690.