Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

Document Type: Research Paper

Authors

1 Department of Mechanical Engineering, Razi University, Kermanshah, Iran

2 Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

10.22034/jsm.2019.584854.1394

Abstract

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respectively. By using various geometric shapes and weight fractions of nanoparticle, the mechanical and thermal properties such as Young’s modulus, shear modulus, heat expansion coefficient and heat transfer coefficient are studied. Due to addressing the properties of interfacial zone between the matrix and nanoparticle, finite element modeling is conducted in two ways, namely, perfect bonding and cohesive zone. The results are validated by comparing with experimental results reported in literature and a reasonable agreement was observed. The prediction function for Young’s modulus is presented by employing Genetic Algorithm (GA) method. Also, Kerner and Paul approaches as theoretical models are used to calculate the Young’s modulus. It was finally concluded that the magnitude of the Young’s and shear modules increase by adding MMT nanoparticles. Furthermore, increment of MMT nanoparticles to polymer matrix nanocomposite decrease the heat expansion and heat transfer coefficients.

Keywords

[1] Fornes T., Paul D., 2003, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer 44(17): 4993-5013.
[2] Karamane M., Raihane M., Tasdelen M.A., Uyar T., Lahcini M., Ilsouk M., 2017, Preparation of fluorinated methacrylate/clay nanocomposite via in‐situ polymerization: Characterization, structure, and properties, Journal of Polymer Science Part A: Polymer Chemistry 55(3): 411-418.
[3] Mahmood W.A.K., Azarian M.H., Fathilah W., Kwok E., 2017, Nanoencapsulation of montmorillonite clay within poly (ethylene glycol) nanobeads by electrospraying, Journal of Applied Polymer Science 134(28): 45048.
[4] Paliwal B., Lawrimore W.B., Chandler M.Q., Horstemeyer M.F., 2017, Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite, Philosophical Magazine 97(15): 1179-1208.
[5] Zeng Q., Yu A., Lu G., 2008, Multiscale modeling and simulation of polymer nanocomposites, Progress in Polymer Science 33(2): 191-269.
[6] Zeng Q.H., Yu A.B., Lu G.Q., Paul D.R., 2005, Clay-based polymer nanocomposites: research and commercial development, Journal of Nanoscience and Nanotechnology 5(10): 1574-1592.
[7] Raja S.N., Olson A.C., Limaye A., Thorkelsson K., Luong A., Lin L., 2015, Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: Effect of interface orientation, Proceedings of the National Academy of Sciences 112(21): 6533-6538.
[8] Wang Z., Lv Q., Chen S., Li C., Sun S., Hu S., 2016, Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite: A molecular dynamics simulation study, ACS Applied Materials & Interfaces 8(11): 7499-7508.
[9] Han Y., Elliott J., 2007, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science 39(2): 315-323.
[10] Yang S., Yu S., Kyoung W., Han D-S., Cho M., 2012, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections, Polymer 53(2):623-633.
[11] Zhu H.,1996, Sintering processes of two nanoparticles: a study by molecular dynamics simulations, Philosophical Magazine Letters 73(1): 27-33.
[12] Smith J.S., Bedrov D., Smith G.D., 2003, A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite, Composites Science and Technology 63(11): 1599-1605.
[13] Naicker P.K., Cummings P.T., Zhang H., Banfield J.F., 2005, Characterization of titanium dioxide nanoparticles using molecular dynamics simulations, The Journal of Physical Chemistry B 109(32): 15243-15249.
[14] Hooper J.B., Schweizer K.S., 2006, Theory of phase separation in polymer nanocomposites, Macromolecules 39(15): 5133-5142.
[15] Ghosh A., Mandal P., Karmakar S., Ghosh A., 2013, Analytical theory and stability analysis of an elongated nanoscale object under external torque, Physical Chemistry Chemical Physics 15(26): 10817-10823.
[16] Valavala P., Odegard G., 2005, Modeling techniques for determination of mechanical properties of polymer nanocomposites, Reviews on Advanced Materials Science 9: 34-44.
[17] Yu S., Yang S., Cho M., 2009, Multi-scale modeling of cross-linked epoxy nanocomposites, Polymer 50(3): 945-952.
[18] Sheng N., Boyce M.C., Parks D.M., Rutledge G., Abes J., Cohen R., 2004, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer 45(2): 487-506.
[19] Spanos P., Kontsos A., 2008, A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites, Probabilistic Engineering Mechanics 23(4): 456-470.
[20] Buryachenko V., Roy A., Lafdi K., Anderson K.L., Chellapilla S., 2005, Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation, Composites Science and Technology 65(15): 2435-2465.
[21] Mohammadpour E., Awang M., Kakooei S., Akil H.M., 2014, Modeling the tensile stress–strain response of carbon nanotube/polypropylene nanocomposites using nonlinear representative volume element, Materials & Design 58: 36-42.
[22] Shahzamanian M., Tadepalli T., Rajendran A., Hodo W.D., Mohan R., Valisetty R., 2014, Representative volume element based modeling of cementitious materials, Journal of Engineering Materials and Technology 136(1): 011007.
[23] Ali D., Sen S., 2016, Finite element analysis of the effect of boron nitride nanotubes in beta tricalcium phosphate and hydroxyapatite elastic modulus using the RVE model, Composites Part B: Engineering 90: 336-340.
[24] Bravo-Castillero J., Rodrigues-Ramos R., Houari M., Otero J., 2009, Homogenization and effective properties of periodic thermo magneto electro elastic composites, Journal of Materials and Structures 4(5): 819-836.
[25] Lezgy-Nazargah M., Eskandari-Nadaf H., 2018, Effective coupled thermo-electro-mechanical properties of piezoelectric structural fiber composites: A micromechanical approach, Journal of Intelligent Material Systems and Structures 29(4): 496-513.
[26] Lezgy-Nazargah M., 2015, A micromechanics model for effective coupled thermo-electro-elastic properties of Macro Fiber Composites, Journal of Mechanics 31(2):183-199.
[27] Huang J., Uhrig M., Weber U., Schmauder S., 2015, Numerical simulation of mechanical properties of nano particle modified polyamide 6 via RVE modeling, Journal of Materials Science and Chemical Engineering 3(01): 95-102.
[28] Yas M.H., Karami Khorramabadi M., 2017, Preparation with modeling and theoretical predictions of mechanical properties of functionally graded polyethylene/clay nanocomposites, Journal of Theoretical and Applied Mechanics 55(2): 583-593.
[29] Shojaie M., Golestanian H., 2011, Effects of interface characteristics on mechanical properties of carbon nanotube reinforced polymer composites, Materials Science and Technology 27(5): 916-922.
[30] Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press.
[31] Bashorov M., Kozlov G., Zaikov G., Mikitaev A., 2009, Polymers as natural nanocomposites, The Comparative Analysis of Reinforcement Mechanisms 3(3): 183-185.
[32] Zare Y., Rhee K.Y., Hui D., 2017, Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites, Composites Part B: Engineering 122:41-46.
[33] Paul B., 1959, Prediction of Elastic Constants of Multi-Phase Materials, Brown University Providence.