[1] Chakraborty A., Gopalakrishnan S., Reddy J.N., 2003, A new beam finite element for the analysis of functionally graded materials, International Journal Mechanic Science 45(3): 519-539.
[2] Kadoli R., Akhtar K., Ganesan N., 2008, Static analysis of functionally graded beams using higher order shear deformation theory, Applied Mathematical Modeling 32(12): 2509-2525.
[3] Kapuria S., Bhattacharyya M., Kumar A.N., 2008, Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation, Composite Structures 82(3): 390-402.
[4] Pindera M-J., Dunn P., 1995, An evaluation of coupled microstructural approach for the analysis of functionally graded composites via the finite element method, National Aeronautics and Space Administration NASA, Contractor Report 195455.
[5] Ziou H., Guenfoud H., Guenfoud M., 2016, Numerical modelling of a Timoshenko FGM beam using the finite element method, International Journal of Structural Engineering 7(3): 239-261.
[6] Nguyen D.K., Gan B.S., 2014, Large deflections of tapered functionally graded beams subjected to end forces, Applied Mathematical Modeling 38(11-12): 3054-3066.
[7] Nguyen D.K., 2013, Large displacement response of tapered cantilever beams made of axially functionally graded material, Composites Part B: Engineering 55: 298-305.
[8] Kutiš V., Murin J., Belak R., Paulech J., 2011, Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials, Computers and Structures 89(11): 1192-1205.
[9] Murin J., Kutiš V., 2002, 3D-beam element with continuous variation of the cross-sectional area, Computers and Structures 80(3–4): 329-352.
[10] Lazreg H., Ait Amar Meziane M., Abdelhak Z., Hassaine Daouadji T., Adda Bedia E.A., 2016, Static and dynamic behavior of FGM plate using a new first shear deformation plate theory, Structural Engineering & Mechanics 57(1): 127-140.
[11] Rezaiee-Pajand M., Masoodi A.R., Mokhtari M., 2018, Static analysis of functionally graded non-prismatic sandwich beams, Advances in Computational Design 3(2): 165-190.
[12] Benferhat R., Daouadji T.H., Adim B., 2016, A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load, Advances in Materials Research 5(2): 107-120.
[13] Lazreg H., Nafissa Z., Fabrice B., 2019, An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models, Structural Engineering & Mechanics 69(2): 231-241.
[14] Guenfoud H., Himeur M., Ziou H., Guenfoud M., 2018, The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation, Structural Engineering & Mechanics 68(4): 385-398.
[15] Alshorbagy A.E., Eltaher M.A., Mahmoud F.F., 2011, Free vibration characteristics of a functionally graded beam by finite element method, Applied Mathematical Modelling 35: 412-425.
[16] Eltaher M.A., Samir A.E.,Mahmoud F.F., 2012, Free vibration analysis of functionally graded size-dependent nano-beams, Applied Mathematics and Computation 218: 7406-7420.
[17] Eltaher M.A., Samir A.E., Mahmoud F.F., 2013, Static and stability analysis of nonlocal functionally graded nano-beams, Composite Structures 96: 82-88.
[18] Mahmoud F.F., Eltaher M.A, Alshorbagy A.E., Meletis E.I., 2012, Static analysis of nano-beams including surface effects by nonlocal finite element, Journal of Mechanical Science and Technology 26(11): 3555-3563.
[19] Hamed M.A., Eltaher M.A., Sadoun A.M., Almitani K.H., 2016, Free vibration of symmetric and sigmoid of functionally graded nano-beams, Applied Physics A 122(9): 829.
[20] Li X.F., Wang B.L., Han J.C., 2010, A higher-order theory for static and dynamic analyses of functionally graded beams, Archive of Applied Mechanics 80(10): 1197-1212.